Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 23 vở thực hành Toán 9

Giải bài 6 trang 23 vở thực hành Toán 9

Giải bài 6 trang 23 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 23 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc trong bao lâu?

Đề bài

Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc trong bao lâu?

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 23 vở thực hành Toán 9 1

Các bước giải một bài toán bằng cách lập hệ phương trình:

Bước 1. Lập hệ phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải hệ phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

  • Gọi x là số giờ để người thứ nhất hoàn thành công việc một mình, y là số giờ để người thứ hai hoàn thành công việc một mình. Điều kiện: \(x,y > 16\).

Mỗi giờ người thứ nhất làm được \(\frac{1}{x}\) (công việc) và người thứ hai làm được \(\frac{1}{y}\) (công việc).

Cả hai người cùng làm thì mỗi giờ được \(\frac{1}{x} + \frac{1}{y}\) (công việc) và hoàn thành toàn bộ công việc trong 16 giờ nên ta có phương trình \(16\left( {\frac{1}{x} + \frac{1}{y}} \right) = 1\). (1)

Người thứ nhất làm trong 3 giờ được \(\frac{3}{x}\) (công việc); người thứ hai làm trong 6 giờ được \(\frac{6}{y}\) (công việc) và khi đó cả hai chỉ hoàn thành được 25% (\( = \frac{1}{4}\) công việc) nên ta có phương trình \(\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\). (2)

Từ (1) và (2), ta có hệ phương trình (I) \(\left\{ \begin{array}{l}16\left( {\frac{1}{x} + \frac{1}{y}} \right) = 1\\\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\end{array} \right.\).

  • Đặt \(u = \frac{1}{x}\) và \(v = \frac{1}{y}\), ta đưa hệ (I) về dạng (II) \(\left\{ \begin{array}{l}16\left( {u + v} \right) = 1\;\left( 3 \right)\\3u + 6v = \frac{1}{4}\;\left( 4 \right)\end{array} \right.\).

Giải hệ (II): Từ (3) ta có \(u + v = \frac{1}{{16}}\). Thay thế giá trị này vào (4), ta được: \(3\left( {u + v} \right) + 3v = \frac{1}{4}\) hay \(\frac{3}{{16}} + 3v = \frac{1}{4}\), suy ra \(v = \frac{1}{{48}}\). Do đó, \(u = \frac{1}{{24}}\).

Từ đó, ta có: \(u = \frac{1}{x} = \frac{1}{{24}}\) suy ra \(x = 24\); \(v = \frac{1}{y} = \frac{1}{{48}}\) suy ra \(y = 48\).

  • Các giá trị tìm được của x và y thỏa mãn điều kiện của ẩn.

Vậy nếu làm riêng thì người thứ nhất hoàn thành công việc trong 24 giờ, người thứ hai hoàn thành trong 48 giờ.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 6 trang 23 vở thực hành Toán 9 đặc sắc thuộc chuyên mục toán 9 sgk trên nền tảng toán học. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 6 trang 23 Vở thực hành Toán 9: Tổng quan

Bài 6 trang 23 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài 6 trang 23 Vở thực hành Toán 9

Bài 6 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số a của hàm số y = ax + b khi biết đồ thị của hàm số.
  • Dạng 2: Tìm giá trị của x khi biết giá trị của y và ngược lại.
  • Dạng 3: Xác định đường thẳng đi qua hai điểm cho trước.
  • Dạng 4: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Lời giải chi tiết bài 6 trang 23 Vở thực hành Toán 9

Bài 6.1

Cho hàm số y = 2x + 1. Tìm y khi x = -1; x = 0; x = 2.

Lời giải:

Khi x = -1, y = 2*(-1) + 1 = -1.

Khi x = 0, y = 2*0 + 1 = 1.

Khi x = 2, y = 2*2 + 1 = 5.

Bài 6.2

Cho hàm số y = -3x + 2. Tìm x khi y = -1; y = 0; y = 5.

Lời giải:

Khi y = -1, -1 = -3x + 2 => -3x = -3 => x = 1.

Khi y = 0, 0 = -3x + 2 => -3x = -2 => x = 2/3.

Khi y = 5, 5 = -3x + 2 => -3x = 3 => x = -1.

Bài 6.3

Xác định hệ số a của hàm số y = ax + 1, biết rằng đồ thị của hàm số đi qua điểm A(1; 3).

Lời giải:

Vì đồ thị của hàm số đi qua điểm A(1; 3) nên ta có: 3 = a*1 + 1 => a = 2.

Bài 6.4

Tìm hệ số a của hàm số y = ax - 2, biết rằng khi x = 2 thì y = 0.

Lời giải:

Khi x = 2 và y = 0, ta có: 0 = a*2 - 2 => 2a = 2 => a = 1.

Phương pháp giải bài tập hàm số bậc nhất

Để giải các bài tập về hàm số bậc nhất, các em cần nắm vững các kiến thức sau:

  • Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  • Đồ thị của hàm số bậc nhất: Đồ thị của hàm số bậc nhất là một đường thẳng.
  • Cách xác định đường thẳng đi qua hai điểm: Sử dụng công thức tính hệ số góc và phương trình đường thẳng.
  • Ứng dụng của hàm số bậc nhất: Giải các bài toán thực tế liên quan đến sự thay đổi tỷ lệ.

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng online về hàm số bậc nhất để hiểu rõ hơn về kiến thức này.

Kết luận

Bài 6 trang 23 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em sẽ học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.

Tài liệu, đề thi và đáp án Toán 9