Bài 5 trang 93 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5 trang 93 Vở thực hành Toán 9 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tam giác đều ABC ngoại tiếp đường tròn (I). Tính độ dài các cạnh của tam giác ABC biết rằng bán kính của (I) bằng 1cm.
Đề bài
Cho tam giác đều ABC ngoại tiếp đường tròn (I). Tính độ dài các cạnh của tam giác ABC biết rằng bán kính của (I) bằng 1cm.
Phương pháp giải - Xem chi tiết
Đường tròn nội tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác đó và bán kính bằng \(\frac{{\sqrt 3 }}{6}a\).
Lời giải chi tiết
Gọi a là độ dài cạnh của tam giác ABC và r là bán kính đường tròn nội tiếp của tam giác ABC.
Ta có \(r = \frac{{\sqrt 3 }}{6}a\), hay \(a = 2\sqrt 3 .r = 2\sqrt 3 \left( {cm} \right)\).
Bài 5 trang 93 Vở thực hành Toán 9 tập 2 thuộc chương Hàm số bậc nhất. Bài tập này thường liên quan đến việc xác định hàm số, tìm giao điểm của đồ thị hàm số, và ứng dụng hàm số vào giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm:
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 5. Giả sử bài 5 yêu cầu:
“Cho hàm số y = 2x + 3. Hãy tìm giá trị của y khi x = -1; x = 0; x = 2.”
Lời giải:
Khi x = -1, ta có: y = 2*(-1) + 3 = -2 + 3 = 1
Khi x = 0, ta có: y = 2*0 + 3 = 0 + 3 = 3
Khi x = 2, ta có: y = 2*2 + 3 = 4 + 3 = 7
Vậy, khi x = -1 thì y = 1; khi x = 0 thì y = 3; khi x = 2 thì y = 7.
Ngoài việc tính giá trị của hàm số, bài 5 trang 93 Vở thực hành Toán 9 tập 2 còn có thể xuất hiện các dạng bài tập sau:
Để giải các bài tập về hàm số bậc nhất một cách hiệu quả, học sinh cần:
Ví dụ: Cho hàm số y = -x + 2. Tìm giá trị của x khi y = 5.
Lời giải:
Thay y = 5 vào hàm số, ta có: 5 = -x + 2
Suy ra: x = 2 - 5 = -3
Vậy, khi y = 5 thì x = -3.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em học sinh có thể tự luyện tập thêm các bài tập tương tự trong sách giáo khoa, sách bài tập, hoặc trên các trang web học toán online.
Bài 5 trang 93 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và các phương pháp giải bài tập được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.