Bài 3 trang 130 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3 trang 130 VTH Toán 9 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các bất phương trình sau: a) ( - 6x + 3left( {x + 1} right) > 4x - left( {x - 4} right)); b) (left( {2x + 1} right)left( {2x - 1} right) < 4{x^2} - 4x + 1).
Đề bài
Giải các bất phương trình sau:
a) \( - 6x + 3\left( {x + 1} \right) > 4x - \left( {x - 4} \right)\);
b) \(\left( {2x + 1} \right)\left( {2x - 1} \right) < 4{x^2} - 4x + 1\).
Phương pháp giải - Xem chi tiết
+ Đưa bất phương trình về dạng bất phương trình bậc nhất một ẩn \(ax + b < 0\left( {a \ne 0} \right)\).
+ Bất phương trình \(ax + b < 0\left( {a \ne 0} \right)\) được giải như sau:
\(ax + b < 0\)
\(ax < - b\)
Nếu \(a > 0\) thì \(x < - \frac{b}{a}\).
Nếu \(a < 0\) thì \(x > - \frac{b}{a}\).
Bất phương trình \(ax + b > 0\left( {a \ne 0} \right)\) ta giải tương tự.
Lời giải chi tiết
a) \( - 6x + 3\left( {x + 1} \right) > 4x - \left( {x - 4} \right)\)
\( - 6x + 3x + 3 > 4x - x + 4\)
\( - 6x + 3x - 4x + x > 4 - 3\)
\( - 6x > 1\)
\(x < \frac{{ - 1}}{6}\).
b) \(\left( {2x + 1} \right)\left( {2x - 1} \right) < 4{x^2} - 4x + 1\)
\(4{x^2} - 1 < 4{x^2} - 4x + 1\)
\(4{x^2} - 4{x^2} + 4x < 1 + 1\)
\(4x < 2\)
\(x < \frac{1}{2}\).
Bài 3 trang 130 Vở thực hành Toán 9 tập 2 thuộc chương trình học về hàm số bậc nhất và hàm số bậc hai. Bài tập này thường yêu cầu học sinh xác định hệ số góc, đường thẳng song song, vuông góc, và ứng dụng vào giải các bài toán liên quan đến thực tế.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 130 Vở thực hành Toán 9 tập 2, chúng ta cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tìm phương trình đường thẳng đi qua điểm A(1; 2) và song song với đường thẳng y = 3x - 1.
Giải:
Vì đường thẳng cần tìm song song với đường thẳng y = 3x - 1 nên hệ số góc của nó cũng là 3. Vậy phương trình đường thẳng có dạng y = 3x + b.
Thay tọa độ điểm A(1; 2) vào phương trình, ta được: 2 = 3(1) + b => b = -1.
Vậy phương trình đường thẳng cần tìm là y = 3x - 1.
Ngoài việc tìm phương trình đường thẳng, bài 3 trang 130 Vở thực hành Toán 9 tập 2 còn có thể yêu cầu học sinh giải các bài toán ứng dụng. Để giải các bài toán này, chúng ta cần:
Khi giải bài 3 trang 130 Vở thực hành Toán 9 tập 2, các em học sinh cần lưu ý những điều sau:
Bài 3 trang 130 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Dạng bài tập | Phương pháp giải |
---|---|
Tìm hệ số góc | Sử dụng công thức y = ax + b |
Tìm phương trình đường thẳng | Sử dụng công thức y - y0 = a(x - x0) |
Xác định tính song song, vuông góc | So sánh hệ số góc |