Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 113 vở thực hành Toán 9

Giải bài 2 trang 113 vở thực hành Toán 9

Giải bài 2 trang 113 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 113 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập môn Toán, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Cho đường tròn (O) đi qua ba đỉnh A, B và C của một tam giác cân tại A. Chứng minh rằng đường thẳng đi qua A và song song với BC là một tiếp tuyến của (O).

Đề bài

Cho đường tròn (O) đi qua ba đỉnh A, B và C của một tam giác cân tại A. Chứng minh rằng đường thẳng đi qua A và song song với BC là một tiếp tuyến của (O).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 113 vở thực hành Toán 9 1

+ Gọi d là đường thẳng đi qua A và song song với BC.

+ Chứng minh OA là đường trung trực của BC, suy ra \(BC \bot OA\).

+ Mà d//BC nên \(d \bot OA\), suy ra d là tiếp tuyến của (O).

Lời giải chi tiết

(H.5.29)

Giải bài 2 trang 113 vở thực hành Toán 9 2

Gọi d là đường thẳng đi qua A và song song với BC.

Ta có: O khác A và \(OB = OC\).

Mặt khác, tam giác ABC cân tại A nên \(AB = AC\).

Từ đó suy ra OA là đường trung trực của BC, tức là \(BC \bot OA\); mà d//BC nên \(d \bot OA\).

Do đó d tiếp xúc với (O) tại A, hay d là tiếp tuyến của (O). (theo dấu hiệu nhận biết tiếp tuyến).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 2 trang 113 vở thực hành Toán 9 đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 2 trang 113 Vở thực hành Toán 9: Tổng quan

Bài 2 trang 113 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài 2 trang 113 Vở thực hành Toán 9

Bài 2 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc nhất: Yêu cầu học sinh xác định các hệ số a, b trong hàm số y = ax + b dựa vào thông tin đề bài cung cấp.
  • Tìm giao điểm của hai đường thẳng: Sử dụng phương pháp giải hệ phương trình để tìm tọa độ giao điểm của hai đường thẳng.
  • Ứng dụng hàm số bậc nhất vào giải quyết bài toán thực tế: Ví dụ như bài toán về quãng đường, thời gian, vận tốc.
  • Vẽ đồ thị hàm số bậc nhất: Xác định các điểm thuộc đồ thị và vẽ đồ thị trên mặt phẳng tọa độ.

Phương pháp giải bài 2 trang 113 Vở thực hành Toán 9

Để giải quyết bài 2 trang 113 Vở thực hành Toán 9 một cách hiệu quả, các em cần nắm vững các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  2. Xác định hàm số bậc nhất: Nếu đề bài yêu cầu, hãy xác định các hệ số a, b của hàm số.
  3. Lập phương trình: Biểu diễn các đại lượng trong bài toán bằng các phương trình toán học.
  4. Giải phương trình: Sử dụng các phương pháp giải phương trình đã học để tìm ra nghiệm.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả tìm được phù hợp với điều kiện của bài toán.

Ví dụ minh họa giải bài 2 trang 113 Vở thực hành Toán 9

Bài toán: Cho hàm số y = 2x - 1. Tìm tọa độ giao điểm của đường thẳng này với đường thẳng y = -x + 2.

Giải:

Để tìm tọa độ giao điểm, ta giải hệ phương trình sau:

y = 2x - 1y = -x + 2

Thay y = 2x - 1 vào phương trình y = -x + 2, ta được:

2x - 1 = -x + 2

3x = 3

x = 1

Thay x = 1 vào phương trình y = 2x - 1, ta được:

y = 2(1) - 1 = 1

Vậy tọa độ giao điểm của hai đường thẳng là (1; 1).

Lưu ý khi giải bài 2 trang 113 Vở thực hành Toán 9

  • Luôn kiểm tra lại kết quả sau khi giải bài.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
  • Tham khảo các tài liệu học tập khác để hiểu rõ hơn về kiến thức.
  • Luyện tập thường xuyên để rèn luyện kỹ năng giải bài.

Tổng kết

Bài 2 trang 113 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 9