Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 14 Vở thực hành Toán 9 tập 2. Bài học này thuộc chương trình đại số, tập trung vào việc giải các bài toán liên quan đến hàm số bậc nhất.
Giaitoan.edu.vn cung cấp lời giải dễ hiểu, chi tiết từng bước, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Tìm các giá trị của m để phương trình (3{x^2} + 2left( {m - 2} right)x + 1 = 0) có nghiệm kép.
Đề bài
Tìm các giá trị của m để phương trình \(3{x^2} + 2\left( {m - 2} \right)x + 1 = 0\) có nghiệm kép.
Phương pháp giải - Xem chi tiết
+ Tính \(\Delta '\).
+ Phương trình đã cho có nghiệm kép khi \(\Delta ' = 0\).
+ Giải phương trình ẩn m ta tìm được m.
Lời giải chi tiết
Ta có: \(\Delta ' = {\left( {m - 2} \right)^2} - 3 = {m^2} - 4m + 1\)
Phương trình có nghiệm kép khi \(\Delta ' = 0\), tức là \({m^2} - 4m + 1 = 0\).
Giải phương trình ẩn m này ta được \(m = 2 + \sqrt 3 \) hoặc \(m = 2 - \sqrt 3 \).
Vậy với \(m = 2 + \sqrt 3 \) hoặc \(m = 2 - \sqrt 3 \) thì phương trình đã cho có nghiệm kép.
Bài 7 trang 14 Vở thực hành Toán 9 tập 2 yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Cụ thể, bài toán thường liên quan đến việc xác định hàm số, tìm điểm thuộc đồ thị hàm số, hoặc giải các bài toán ứng dụng liên quan đến hàm số.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải bài tập bài 7 trang 14 Vở thực hành Toán 9 tập 2 hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ 1: Xác định hàm số y = ax + b biết đồ thị của hàm số đi qua hai điểm A(1; 2) và B(-1; 0).
Giải:
Thay tọa độ điểm A(1; 2) vào hàm số, ta được: 2 = a(1) + b => a + b = 2 (1)
Thay tọa độ điểm B(-1; 0) vào hàm số, ta được: 0 = a(-1) + b => -a + b = 0 (2)
Giải hệ phương trình (1) và (2), ta được: a = 1 và b = 1.
Vậy hàm số cần tìm là y = x + 1.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách Vở thực hành Toán 9 tập 2 và các tài liệu ôn tập khác.
Khi giải bài tập về hàm số bậc nhất, các em nên:
Các em có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài 7 trang 14 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp các em hiểu sâu hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày ở trên, các em sẽ tự tin hơn khi giải quyết các bài toán tương tự.