Chào mừng bạn đến với giaitoan.edu.vn! Chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho các câu hỏi trắc nghiệm trang 21 Vở thực hành Toán 9 tập 2. Mục tiêu của chúng tôi là giúp các em học sinh nắm vững kiến thức và tự tin giải quyết các bài toán.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết mang đến cho bạn những lời giải chính xác và đầy đủ nhất.
Tổng hai nghiệm của phương trình (2{x^2} - 4x + 1 = 0) là A. 2. B. -2. C. (frac{1}{2}). D. ( - frac{1}{2}).
Trả lời Câu 1 trang 21 Vở thực hành Toán 9
Tổng hai nghiệm của phương trình \(2{x^2} - 4x + 1 = 0\) là
A. 2.
B. -2.
C. \(\frac{1}{2}\).
D. \( - \frac{1}{2}\).
Phương pháp giải:
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Nếu \(\Delta ' > 0\) thì áp dụng định lí Viète tổng các nghiệm là \({x_1} + {x_2} = \frac{{ - b}}{a}\).
Lời giải chi tiết:
Vì \(\Delta ' = {\left( { - 2} \right)^2} - 2 = 2 > 0\) nên tổng hai nghiệm của phương trình \(2{x^2} - 4x + 1 = 0\) là \({x_1} + {x_2} = \frac{4}{2} = 2\)
Chọn A
Trả lời Câu 2 trang 21 Vở thực hành Toán 9
Tích hai nghiệm của phương trình \(2{x^2} + 4x - 9 = 0\) là
A. \(\frac{9}{2}\).
B. \( - \frac{9}{2}\).
C. -2.
D. 2.
Phương pháp giải:
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Nếu \(\Delta ' > 0\) thì áp dụng định lí Viète tích các nghiệm là \({x_1}.{x_2} = \frac{c}{a}\)
Lời giải chi tiết:
Vì \(\Delta ' = 22 > 0\) nên tích hai nghiệm của phương trình \(2{x^2} + 4x - 9 = 0\) là \({x_1}.{x_2} = \frac{{ - 9}}{2}\)
Chọn B
Trả lời Câu 3 trang 21 Vở thực hành Toán 9
Hai số 3 và -5 là nghiệm của phương trình
A. \({x^2} - 2x - 15 = 0\).
B. \({x^2} + 2x - 15 = 0\).
C. \({x^2} - 15x + 2 = 0\).
D. \({x^2} + 15x - 2 = 0\).
Phương pháp giải:
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
Lời giải chi tiết:
Hai số 3 và -5 có tổng là -2 và tích là -15 nên hai số là nghiệm của phương trình \({x^2} + 2x - 15 = 0\).
Chọn B
Trả lời Câu 4 trang 21 Vở thực hành Toán 9
Tổng bình phương các nghiệm của phương trình \({x^2} - 5x + 3 = 0\) là
A. 5.
B. 3.
C. 19.
D. 22.
Phương pháp giải:
+ Tính \(\Delta \).
+ Viết định lí Viète ta có để tính \({x_1} + {x_2};{x_1}.{x_2}\).
+ Biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó tính được tổng bình phương các nghiệm.
Lời giải chi tiết:
Vì \(\Delta = {\left( { - 5} \right)^2} - 4.1.3 = 23 > 0\) nên phương trình đã cho có hai nghiệm phân biệt \({x_1}\) và \({x_2}\).
Theo định lí Viète ta có: \({x_1} + {x_2} = 5;{x_1}.{x_2} = 3\)
Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {5^2} - 2.3 = 19\)
Chọn C
Trả lời Câu 5 trang 21 Vở thực hành Toán 9
Nếu phương trình \({x^2} - 2mx - m = 0\) có một nghiệm là -1 thì nghiệm của lại là:
A. 2.
B. -2.
C. -m.
D. m.
Phương pháp giải:
Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết:
Vì \(x = - 1\) là một nghiệm của phương trình nên ta có nghiệm còn lại của phương trình là: \(x = \frac{{ - \left( { - m} \right)}}{1} = m\)
Chọn D
Chọn phương án đúng trong mỗi câu sau:
Trả lời Câu 1 trang 21 Vở thực hành Toán 9
Tổng hai nghiệm của phương trình \(2{x^2} - 4x + 1 = 0\) là
A. 2.
B. -2.
C. \(\frac{1}{2}\).
D. \( - \frac{1}{2}\).
Phương pháp giải:
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Nếu \(\Delta ' > 0\) thì áp dụng định lí Viète tổng các nghiệm là \({x_1} + {x_2} = \frac{{ - b}}{a}\).
Lời giải chi tiết:
Vì \(\Delta ' = {\left( { - 2} \right)^2} - 2 = 2 > 0\) nên tổng hai nghiệm của phương trình \(2{x^2} - 4x + 1 = 0\) là \({x_1} + {x_2} = \frac{4}{2} = 2\)
Chọn A
Trả lời Câu 2 trang 21 Vở thực hành Toán 9
Tích hai nghiệm của phương trình \(2{x^2} + 4x - 9 = 0\) là
A. \(\frac{9}{2}\).
B. \( - \frac{9}{2}\).
C. -2.
D. 2.
Phương pháp giải:
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Nếu \(\Delta ' > 0\) thì áp dụng định lí Viète tích các nghiệm là \({x_1}.{x_2} = \frac{c}{a}\)
Lời giải chi tiết:
Vì \(\Delta ' = 22 > 0\) nên tích hai nghiệm của phương trình \(2{x^2} + 4x - 9 = 0\) là \({x_1}.{x_2} = \frac{{ - 9}}{2}\)
Chọn B
Trả lời Câu 3 trang 21 Vở thực hành Toán 9
Hai số 3 và -5 là nghiệm của phương trình
A. \({x^2} - 2x - 15 = 0\).
B. \({x^2} + 2x - 15 = 0\).
C. \({x^2} - 15x + 2 = 0\).
D. \({x^2} + 15x - 2 = 0\).
Phương pháp giải:
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
Lời giải chi tiết:
Hai số 3 và -5 có tổng là -2 và tích là -15 nên hai số là nghiệm của phương trình \({x^2} + 2x - 15 = 0\).
Chọn B
Trả lời Câu 4 trang 21 Vở thực hành Toán 9
Tổng bình phương các nghiệm của phương trình \({x^2} - 5x + 3 = 0\) là
A. 5.
B. 3.
C. 19.
D. 22.
Phương pháp giải:
+ Tính \(\Delta \).
+ Viết định lí Viète ta có để tính \({x_1} + {x_2};{x_1}.{x_2}\).
+ Biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó tính được tổng bình phương các nghiệm.
Lời giải chi tiết:
Vì \(\Delta = {\left( { - 5} \right)^2} - 4.1.3 = 23 > 0\) nên phương trình đã cho có hai nghiệm phân biệt \({x_1}\) và \({x_2}\).
Theo định lí Viète ta có: \({x_1} + {x_2} = 5;{x_1}.{x_2} = 3\)
Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {5^2} - 2.3 = 19\)
Chọn C
Trả lời Câu 5 trang 21 Vở thực hành Toán 9
Nếu phương trình \({x^2} - 2mx - m = 0\) có một nghiệm là -1 thì nghiệm của lại là:
A. 2.
B. -2.
C. -m.
D. m.
Phương pháp giải:
Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết:
Vì \(x = - 1\) là một nghiệm của phương trình nên ta có nghiệm còn lại của phương trình là: \(x = \frac{{ - \left( { - m} \right)}}{1} = m\)
Chọn D
Trang 21 Vở thực hành Toán 9 tập 2 thường chứa các bài tập trắc nghiệm liên quan đến các chủ đề đã học trong chương. Các chủ đề này có thể bao gồm hàm số bậc nhất, hệ phương trình bậc nhất hai ẩn, phương trình bậc hai một ẩn, và các ứng dụng thực tế của chúng. Việc giải các bài tập trắc nghiệm này không chỉ giúp học sinh củng cố kiến thức mà còn rèn luyện kỹ năng làm bài thi.
Các câu hỏi trắc nghiệm trang 21 Vở thực hành Toán 9 tập 2 thường xoay quanh các dạng bài sau:
Cho hàm số y = -2x + 3. Xác định hệ số a và b của hàm số.
Giải:
Hàm số y = -2x + 3 có dạng y = ax + b. So sánh hai vế, ta có a = -2 và b = 3.
Giải hệ phương trình sau:
{ x + y = 5 2x - y = 1 }
Giải:
Cộng hai phương trình, ta được:
x + y + 2x - y = 5 + 1
3x = 6
x = 2
Thay x = 2 vào phương trình x + y = 5, ta được:
2 + y = 5
y = 3
Vậy nghiệm của hệ phương trình là (x; y) = (2; 3).
Giải bài tập trắc nghiệm không chỉ giúp học sinh củng cố kiến thức mà còn rèn luyện kỹ năng làm bài thi. Các bài tập trắc nghiệm thường yêu cầu học sinh phải suy nghĩ nhanh chóng và chính xác, đồng thời biết cách loại trừ các đáp án sai. Kỹ năng này rất quan trọng trong các kỳ thi quan trọng như thi tuyển vào lớp 10.
Hy vọng rằng với những hướng dẫn và lời giải chi tiết trên đây, các em học sinh sẽ tự tin hơn khi giải các câu hỏi trắc nghiệm trang 21 Vở thực hành Toán 9 tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!