Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 42 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, hỗ trợ các em giải quyết mọi khó khăn trong môn Toán.
Một hãng taxi có giá mở cửa là 15 nghìn đồng và giá 12 nghìn đồng cho mỗi kilômét tiếp theo. Hỏi với 200 nghìn đồng thì khách có thể di chuyển tối đa được bao nhiêu kilômét (làm tròn đến hàng đơn vị)?
Đề bài
Một hãng taxi có giá mở cửa là 15 nghìn đồng và giá 12 nghìn đồng cho mỗi kilômét tiếp theo. Hỏi với 200 nghìn đồng thì khách có thể di chuyển tối đa được bao nhiêu kilômét (làm tròn đến hàng đơn vị)?
Phương pháp giải - Xem chi tiết
+ Gọi x là số km mà khách hàng di chuyển (x là số nguyên).
+ Từ dữ kiện bài toán suy ra bất phương trình bậc nhất một ẩn x và giải bất phương trình một ẩn đó.
+ Chú ý: Số tiền khách phải trả bằng tiền mở cửa cộng với tiền di chuyển.
Lời giải chi tiết
Gọi x là số km mà khách hàng di chuyển (x là số nguyên). Số tiền khách phải trả cho chuyến đi là \(15 + 12x\) (nghìn đồng). Vì hành khách có 200 nghìn đồng nên số tiền khách trả được cho chuyến đi tối đa là 200 nghìn đồng hay \(15 + 12x \le 200\).
Suy ra \(x \le \frac{{185}}{{12}}\). Ta có: \(\frac{{185}}{{12}} \approx 15,4\) và x là số nguyên nên x lớn nhất bằng 15.
Vậy với 200 nghìn đồng thì khách có thể di chuyển tối đa được 15km.
Bài 4 trang 42 Vở thực hành Toán 9 thuộc chương trình học Toán 9, thường liên quan đến các kiến thức về hàm số bậc nhất, đồ thị hàm số, hoặc các ứng dụng của hàm số trong thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản, công thức và phương pháp giải liên quan.
Tùy thuộc vào từng phiên bản Vở thực hành Toán 9, nội dung bài 4 có thể khác nhau. Tuy nhiên, thường gặp các dạng bài tập sau:
Để giải bài 4 trang 42 Vở thực hành Toán 9 một cách hiệu quả, học sinh có thể áp dụng các phương pháp sau:
Ví dụ: Cho hàm số y = 2x + 1. Hãy xác định hệ số góc và tung độ gốc của hàm số. Vẽ đồ thị của hàm số.
Giải:
Khi giải bài 4 trang 42 Vở thực hành Toán 9, học sinh cần lưu ý những điều sau:
Để hỗ trợ quá trình học tập và giải bài tập Toán 9, học sinh có thể tham khảo các tài liệu sau:
Bài 4 trang 42 Vở thực hành Toán 9 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và ứng dụng của hàm số. Hy vọng với những hướng dẫn và ví dụ minh họa trên, các em học sinh sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong môn Toán.