Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 61 vở thực hành Toán 9

Giải bài 6 trang 61 vở thực hành Toán 9

Giải bài 6 trang 61 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 61 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, hỗ trợ các em học sinh chinh phục môn Toán một cách dễ dàng.

Rút gọn biểu thức (A = sqrt x left( {frac{1}{{sqrt x + 3}} - frac{1}{{3 - sqrt x }}} right);;left( {x ge 0,x ne 9} right)).

Đề bài

Rút gọn biểu thức \(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\;\;\left( {x \ge 0,x \ne 9} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 61 vở thực hành Toán 9 1

Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).

Lời giải chi tiết

\(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right) = \sqrt x .\frac{{3 - \sqrt x - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {3 - \sqrt x } \right)}}\)

\( = \sqrt x .\frac{{ - 2\sqrt x }}{{\left( {\sqrt x + 3} \right)\left( {3 - \sqrt x } \right)}} = \frac{{2x}}{{x - 9}}\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 6 trang 61 vở thực hành Toán 9 đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng tài liệu toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 6 trang 61 Vở thực hành Toán 9: Tổng quan

Bài 6 trang 61 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài 6 trang 61 Vở thực hành Toán 9

Bài 6 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc nhất: Học sinh cần xác định được các hệ số a, b trong hàm số y = ax + b.
  • Tìm giao điểm của hai đường thẳng: Sử dụng phương pháp giải hệ phương trình để tìm tọa độ giao điểm.
  • Ứng dụng hàm số bậc nhất vào giải quyết bài toán thực tế: Ví dụ như bài toán về quãng đường, thời gian, vận tốc.
  • Vẽ đồ thị hàm số bậc nhất: Xác định các điểm đặc biệt trên đồ thị và vẽ đường thẳng.

Phương pháp giải bài 6 trang 61 Vở thực hành Toán 9

Để giải quyết bài 6 trang 61 Vở thực hành Toán 9 một cách hiệu quả, học sinh cần nắm vững các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán và các dữ kiện đã cho.
  2. Phân tích bài toán: Xác định dạng bài tập và phương pháp giải phù hợp.
  3. Thực hiện giải bài: Áp dụng các công thức và kiến thức đã học để giải bài toán.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả giải bài chính xác và hợp lý.

Ví dụ minh họa giải bài 6 trang 61 Vở thực hành Toán 9

Bài tập: Cho hàm số y = 2x - 1. Tìm tọa độ giao điểm của đường thẳng này với đường thẳng y = -x + 2.

Giải:

Để tìm tọa độ giao điểm, ta giải hệ phương trình sau:

y = 2x - 1y = -x + 2

Thay y = 2x - 1 vào phương trình y = -x + 2, ta được:

2x - 1 = -x + 2

3x = 3

x = 1

Thay x = 1 vào phương trình y = 2x - 1, ta được:

y = 2(1) - 1 = 1

Vậy tọa độ giao điểm của hai đường thẳng là (1; 1).

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu học tập khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Lời khuyên

Trong quá trình giải bài tập, nếu gặp khó khăn, các em đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè để được giúp đỡ. Việc trao đổi và thảo luận sẽ giúp các em hiểu rõ hơn về bài học và tìm ra phương pháp giải quyết vấn đề hiệu quả nhất.

Kết luận

Bài 6 trang 61 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em ôn tập và củng cố kiến thức về hàm số bậc nhất. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9