Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 61 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, hỗ trợ các em học sinh chinh phục môn Toán một cách dễ dàng.
Rút gọn biểu thức (A = sqrt x left( {frac{1}{{sqrt x + 3}} - frac{1}{{3 - sqrt x }}} right);;left( {x ge 0,x ne 9} right)).
Đề bài
Rút gọn biểu thức \(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\;\;\left( {x \ge 0,x \ne 9} \right)\).
Phương pháp giải - Xem chi tiết
Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).
Lời giải chi tiết
\(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right) = \sqrt x .\frac{{3 - \sqrt x - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {3 - \sqrt x } \right)}}\)
\( = \sqrt x .\frac{{ - 2\sqrt x }}{{\left( {\sqrt x + 3} \right)\left( {3 - \sqrt x } \right)}} = \frac{{2x}}{{x - 9}}\)
Bài 6 trang 61 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 6 trang 61 Vở thực hành Toán 9 một cách hiệu quả, học sinh cần nắm vững các bước sau:
Bài tập: Cho hàm số y = 2x - 1. Tìm tọa độ giao điểm của đường thẳng này với đường thẳng y = -x + 2.
Giải:
Để tìm tọa độ giao điểm, ta giải hệ phương trình sau:
y = 2x - 1 | y = -x + 2 |
Thay y = 2x - 1 vào phương trình y = -x + 2, ta được:
2x - 1 = -x + 2
3x = 3
x = 1
Thay x = 1 vào phương trình y = 2x - 1, ta được:
y = 2(1) - 1 = 1
Vậy tọa độ giao điểm của hai đường thẳng là (1; 1).
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu học tập khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trong quá trình giải bài tập, nếu gặp khó khăn, các em đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè để được giúp đỡ. Việc trao đổi và thảo luận sẽ giúp các em hiểu rõ hơn về bài học và tìm ra phương pháp giải quyết vấn đề hiệu quả nhất.
Bài 6 trang 61 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em ôn tập và củng cố kiến thức về hàm số bậc nhất. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!