Bài 5 trang 77 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này thường liên quan đến các kiến thức về hàm số bậc nhất và ứng dụng của chúng.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Có hai túi I và II mỗi túi chứa 4 tấm thẻ được đánh số 1; 2; 3; 4. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và nhân hai số ghi trên hai tấm thẻ với nhau. Tính xác suất của các biến cố sau: a) A: “Kết quả là một số lẻ”; b) B: “Kết quả là 1 hoặc một số nguyên tố”.
Đề bài
Có hai túi I và II mỗi túi chứa 4 tấm thẻ được đánh số 1; 2; 3; 4. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và nhân hai số ghi trên hai tấm thẻ với nhau. Tính xác suất của các biến cố sau:
a) A: “Kết quả là một số lẻ”;
b) B: “Kết quả là 1 hoặc một số nguyên tố”.
Phương pháp giải - Xem chi tiết
Cách tính xác suất của một biến cố E:
Bước 1. Mô tả không gian mẫu của phép thử. Từ đó xác định số phần tử của không gian mẫu \(\Omega \).
Bước 2. Chứng tỏ các kết quả có thể của phép thử là đồng khả năng.
Bước 3. Mô tả kết quả thuận lợi của biến cố E. Từ đó xác định số kết quả thuận lợi cho biến cố E.
Bước 4. Lập tỉ số giữa số kết quả thuận lợi cho biến cố E với số phần tử của không gian mẫu \(\Omega \).
Lời giải chi tiết
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Mỗi ô là một kết quả có thể.
Không gian mẫu là
\(\Omega = {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,4} \right),\\\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\\\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,4} \right),\\\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right),\left( {4,4} \right).}\)
Có 16 kết quả có thể là đồng khả năng.
- Có 4 kết quả thuận lợi cho biến cố A là: (1, 1); (3, 1); (1, 3); (3, 3). Do đó, \(P\left( A \right) = \frac{4}{{16}} = \frac{1}{4}\).
- Có 5 kết quả thuận lợi cho biến cố B là: (1, 1); (2, 1); (3, 1); (1, 2); (1, 3). Do đó, \(P\left( B \right) = \frac{5}{{16}}\).
Bài 5 trang 77 Vở thực hành Toán 9 tập 2 thuộc chương trình Toán 9, tập trung vào việc vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hàm số, tìm các điểm thuộc đồ thị hàm số, và giải các bài toán liên quan đến ứng dụng của hàm số.
Bài tập 5 thường bao gồm các dạng bài sau:
Để giải bài tập 5 trang 77 Vở thực hành Toán 9 tập 2 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là một ví dụ về lời giải chi tiết cho một dạng bài tập thường gặp trong bài 5 trang 77:
Cho hàm số y = 2x - 1. Tìm các điểm A và B thuộc đồ thị hàm số lần lượt có hoành độ là -1 và 2.
Lời giải:
Để giải các bài tập về hàm số bậc nhất một cách nhanh chóng và chính xác, các em có thể áp dụng một số mẹo sau:
Để rèn luyện kỹ năng giải bài tập về hàm số bậc nhất, các em có thể làm thêm các bài tập tương tự sau:
Bài 5 trang 77 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và lời giải trên, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả.