Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 48 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, hỗ trợ các em giải quyết mọi khó khăn trong môn Toán.
Để lập đội tuyển năng khiếu về bóng rổ của trường, thầy thể dục đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 15 quả bóng vào rổ, quả bóng vào rổ được cộng 2 điểm; quả bóng ném ra ngoài thì bị trừ 1 điểm. Nếu bạn nào có số điểm từ 15 trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải ném ít nhất bao nhiêu quả vào rổ?
Đề bài
Để lập đội tuyển năng khiếu về bóng rổ của trường, thầy thể dục đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 15 quả bóng vào rổ, quả bóng vào rổ được cộng 2 điểm; quả bóng ném ra ngoài thì bị trừ 1 điểm. Nếu bạn nào có số điểm từ 15 trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải ném ít nhất bao nhiêu quả vào rổ?
Phương pháp giải - Xem chi tiết
+ Gọi x \(\left( {x \in \mathbb{N},x \le 15} \right)\) là số bóng được ném vào rổ.
+ Từ dữ kiện đầu bài lập bất phương trình với ẩn x và giải bất phương trình đó và rút ra kết luận.
Lời giải chi tiết
Gọi x \(\left( {x \in \mathbb{N},x \le 15} \right)\) là số bóng được ném vào rổ, khi đó \(15 - x\) là số bóng ném ra ngoài.
Số điểm một bạn học sinh đạt được khi ném 15 quả bóng là: \(2x - \left( {15 - x} \right) = 3x - 15\).
Để được gọi vào đội tuyển thì \(3x - 15 \ge 15\) hay \(3x \ge 30\). Suy ra \(x \ge 10\).
Vậy một học sinh muốn được chọn vào đội tuyển thì phải ném ít nhất 10 quả vào rổ.
Bài 7 trang 48 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 7 trang 48 Vở thực hành Toán 9, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập.
Cho đường thẳng đi qua hai điểm A(1; 2) và B(-1; 0). Hãy xác định hàm số bậc nhất có dạng y = ax + b đi qua hai điểm này.
Lời giải:
Tìm giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2.
Lời giải:
Để tìm giao điểm, ta giải hệ phương trình:
y = 2x - 1 | |
y = -x + 2 |
Từ hai phương trình, ta có: 2x - 1 = -x + 2 => 3x = 3 => x = 1
Thay x = 1 vào phương trình y = 2x - 1, ta được: y = 2(1) - 1 = 1
Vậy giao điểm của hai đường thẳng là: (1; 1)
Ngoài Vở thực hành Toán 9, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em sẽ tự tin hơn khi giải bài 7 trang 48 Vở thực hành Toán 9 và các bài tập tương tự. Chúc các em học tập tốt!