Chào mừng các em học sinh đến với lời giải chi tiết bài 3 trang 17 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm. a) Tính diện tích đáy S của hình chóp theo a. b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi (a = 4cm). c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?
Đề bài
Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm.
a) Tính diện tích đáy S của hình chóp theo a.
b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi \(a = 4cm\).
c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?
Phương pháp giải - Xem chi tiết
a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a.
b) Thể tích của hình chóp tam giác đều là: \(V = \frac{1}{3}S.h\).
c) + Tính chiều cao mới của đáy hình chóp theo a.
+ Tính diện tích đáy hình chóp mới bằng bao nhiêu lần diện tích đáy hình chóp cũ.
+ Tính thể tích hình chóp mới bằng bao nhiêu lần thể tích hình chóp cũ.
Lời giải chi tiết
a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a là:
\({h_1} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \sqrt {\frac{{3{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\left( {cm} \right)\).
Diện tích đáy S của hình chóp là:
\(S = \frac{1}{2}a.{h_1} = \frac{1}{2}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4}\left( {c{m^2}} \right)\).
b) Thể tích của hình chóp tam giác đều là:
\(V = \frac{1}{3}S.h = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.10 = \frac{{5\sqrt 3 }}{6}{a^2}\left( {c{m^3}} \right)\).
Thay a = 4 cm, ta được \(S = \frac{{5\sqrt 3 }}{6}{4^2} = \frac{40\sqrt 3}{3} \left( {c{m^3}} \right)\).
c) Chiều cao mới của đáy là:
hmới \( = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} - {{\left( {\frac{a}{4}} \right)}^2}} \)
\(= \sqrt {\frac{{{a^2}}}{4} - \frac{{{a^2}}}{{16}}} = \frac{{a\sqrt 3 }}{4}\left( {cm} \right)\).
Diện tích đáy mới là:
Smới \( = \frac{1}{2}.\frac{a}{2}.\frac{{a\sqrt 3 }}{4} = \frac{1}{4}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{1}{4}\).Scũ.
Suy ra Vmới \( = \frac{1}{3}\).Smới.h\( = \frac{1}{3}.\frac{1}{4}\).Scũ.h\( = \frac{1}{4}\).Vcũ
Vậy nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp giảm đi 4 lần.
Bài 3 trang 17 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 3 trang 17 Vở thực hành Toán 9, chúng tôi xin trình bày lời giải chi tiết cho từng phần của bài tập:
Đề bài: (Ví dụ về đề bài câu a)
Lời giải: (Giải thích chi tiết từng bước giải câu a, kèm theo các công thức và lưu ý quan trọng)
Đề bài: (Ví dụ về đề bài câu b)
Lời giải: (Giải thích chi tiết từng bước giải câu b, kèm theo các công thức và lưu ý quan trọng)
Đề bài: (Ví dụ về đề bài câu c)
Lời giải: (Giải thích chi tiết từng bước giải câu c, kèm theo các công thức và lưu ý quan trọng)
Để giúp các em củng cố kiến thức và rèn luyện kỹ năng giải bài tập, chúng tôi xin giới thiệu một số dạng bài tập tương tự:
Để giải bài tập hàm số bậc nhất một cách hiệu quả, các em cần lưu ý những điều sau:
Các em có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Hy vọng rằng với lời giải chi tiết và những hướng dẫn trên, các em sẽ hiểu rõ hơn về cách giải bài 3 trang 17 Vở thực hành Toán 9 và tự tin hơn trong quá trình học tập. Chúc các em học tốt!