Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 87 vở thực hành Toán 9

Giải bài 6 trang 87 vở thực hành Toán 9

Giải bài 6 trang 87 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 87 Vở thực hành Toán 9. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Mặt cắt ngang của một đập ngăn nước có dạng hình thang ABCD (H.4.29a). Chiều rộng của mặt trên AB của đập là 3m. Độ dốc của sườn AD, tức là (tan D = 1,25). Độ dốc của sườn BC, tức là (tan C = 1,5). Chiều cao của đập là 3,5m. Hãy tính chiều rộng CD của chân đập, chiều dài của các sườn AD và BC (làm tròn đến dm).

Đề bài

Mặt cắt ngang của một đập ngăn nước có dạng hình thang ABCD (H.4.29a). Chiều rộng của mặt trên AB của đập là 3m. Độ dốc của sườn AD, tức là \(\tan D = 1,25\). Độ dốc của sườn BC, tức là \(\tan C = 1,5\). Chiều cao của đập là 3,5m. Hãy tính chiều rộng CD của chân đập, chiều dài của các sườn AD và BC (làm tròn đến dm).

Giải bài 6 trang 87 vở thực hành Toán 9 1

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 87 vở thực hành Toán 9 2

+ Kẻ các đường cao AH, BK của hình thang ABCD thì D, H, K, C nằm theo thứ tự đó trên đoạn DC.

+ Trong tam giác vuông AHD, ta có \(DH = \frac{{AH}}{{\tan D}}\), tính được DH.

+ Trong tam giác vuông BKC, ta có \(KC = \frac{{BK}}{{\tan C}}\), tính được KC.

+ Ta có: \(DC = DH + HK + KC\)

+ Áp dụng định lí Pythagore vào tam giác AHD vuông tại H tính được AD.

+ Áp dụng định lí Pythagore vào tam giác BKC vuông tại K tính được BC.

Lời giải chi tiết

(H.4.29b)

Giải bài 6 trang 87 vở thực hành Toán 9 3

Kẻ các đường cao AH, BK của hình thang ABCD thì D, H, K, C nằm theo thứ tự đó trên đoạn DC.

Trong tam giác vuông AHD, ta có

\(DH = \frac{{AH}}{{\tan D}} = \frac{{3,5}}{{1,25}} = 2,8\)

Trong tam giác vuông BKC, ta có

\(KC = \frac{{BK}}{{\tan C}} = \frac{{3,5}}{{1,5}} \approx 2,3\)

Ta có:

\(DC = DH + HK + KC = 2,8 + 3 + 2,3 = 8,1\left( m \right)\)

Trong tam giác AHD, ta có

\(A{D^2} = A{H^2} + H{D^2} = {3,5^2} + {2,8^2}\),

suy ra \(AD \approx 4,5m\).

Trong tam giác vuông BKC, ta có

\(B{C^2} = B{K^2} + K{C^2} = {3,5^2} + {2,3^2}\), suy ra \(BC \approx 4,2m\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 6 trang 87 vở thực hành Toán 9 đặc sắc thuộc chuyên mục toán 9 trên nền tảng tài liệu toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 6 trang 87 Vở thực hành Toán 9: Tổng quan

Bài 6 trang 87 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài 6 trang 87 Vở thực hành Toán 9

Bài 6 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số a của hàm số y = ax + b khi biết đồ thị của hàm số.
  • Dạng 2: Tìm giá trị của x khi biết giá trị của y và hàm số y = ax + b.
  • Dạng 3: Xác định hàm số y = ax + b khi biết hai điểm mà đồ thị của hàm số đi qua.
  • Dạng 4: Ứng dụng hàm số bậc nhất vào giải quyết các bài toán thực tế.

Giải chi tiết bài 6 trang 87 Vở thực hành Toán 9

Bài 6.1

Cho hàm số y = 2x - 3. Tìm y khi x = -1; x = 0; x = 2.

Lời giải:

  • Khi x = -1, y = 2*(-1) - 3 = -5
  • Khi x = 0, y = 2*0 - 3 = -3
  • Khi x = 2, y = 2*2 - 3 = 1

Bài 6.2

Cho hàm số y = -x + 1. Tìm x khi y = 0; y = 2; y = -1.

Lời giải:

  • Khi y = 0, 0 = -x + 1 => x = 1
  • Khi y = 2, 2 = -x + 1 => x = -1
  • Khi y = -1, -1 = -x + 1 => x = 2

Bài 6.3

Tìm hệ số a của hàm số y = ax + 1, biết rằng khi x = 2 thì y = 5.

Lời giải:

Thay x = 2 và y = 5 vào hàm số y = ax + 1, ta có:

5 = a*2 + 1 => 2a = 4 => a = 2

Vậy, hệ số a = 2.

Bài 6.4

Tìm hệ số a của hàm số y = ax - 2, biết rằng khi x = -1 thì y = 3.

Lời giải:

Thay x = -1 và y = 3 vào hàm số y = ax - 2, ta có:

3 = a*(-1) - 2 => -a = 5 => a = -5

Vậy, hệ số a = -5.

Bài 6.5

Tìm hàm số y = ax + b, biết rằng đồ thị của hàm số đi qua hai điểm A(0; -2) và B(1; 1).

Lời giải:

Thay tọa độ điểm A(0; -2) vào hàm số y = ax + b, ta có:

-2 = a*0 + b => b = -2

Thay tọa độ điểm B(1; 1) và b = -2 vào hàm số y = ax + b, ta có:

1 = a*1 - 2 => a = 3

Vậy, hàm số cần tìm là y = 3x - 2.

Mẹo giải bài tập hàm số bậc nhất

  • Nắm vững các khái niệm cơ bản về hàm số bậc nhất: định nghĩa, dạng tổng quát, hệ số góc, giao điểm với trục tọa độ.
  • Luyện tập thường xuyên các dạng bài tập khác nhau để làm quen với các phương pháp giải.
  • Sử dụng đồ thị hàm số để trực quan hóa bài toán và tìm ra lời giải.
  • Kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh đã có thể tự tin giải quyết bài 6 trang 87 Vở thực hành Toán 9 một cách hiệu quả. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9