Chào mừng các em học sinh đến với lời giải chi tiết bài 3 trang 104 Vở thực hành Toán 9 tập 2 trên giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính 2cm. Tính độ dài các cạnh của tam giác ABC.
Đề bài
Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính 2cm. Tính độ dài các cạnh của tam giác ABC.
Phương pháp giải - Xem chi tiết
Đường tròn ngoại tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác đó và bán kính bằng \(\frac{{\sqrt 3 }}{3}a\).
Lời giải chi tiết
Gọi a là độ dài của cạnh tam giác đều ABC và R là bán kính đường tròn (O), ta có \(R = \frac{{\sqrt 3 }}{3}a\). Suy ra \(a = \sqrt 3.R = 2\sqrt 3 \left( {cm} \right)\).
Bài 3 trang 104 Vở thực hành Toán 9 tập 2 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 104 Vở thực hành Toán 9 tập 2 hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ 1: Cho hàm số y = 2x + 1. Tìm tọa độ điểm A thuộc đồ thị hàm số có hoành độ là 3.
Giải: Thay x = 3 vào hàm số, ta được y = 2 * 3 + 1 = 7. Vậy tọa độ điểm A là (3; 7).
Ví dụ 2: Cho hai điểm A(1; 2) và B(3; 6). Tìm hệ số góc của đường thẳng AB.
Giải: Hệ số góc của đường thẳng AB là m = (yB - yA) / (xB - xA) = (6 - 2) / (3 - 1) = 4 / 2 = 2.
Để củng cố kiến thức và kỹ năng giải bài tập, các em có thể luyện tập thêm với các bài tập tương tự trong Vở thực hành Toán 9 tập 2 và các đề thi thử Toán 9.
Trong quá trình học tập, các em nên:
Bài 3 trang 104 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.