Bài 8 trang 24 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải, giúp các em hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.
Tìm m để phương trình ({x^2} + 4x + m = 0) có hai nghiệm ({x_1},{x_2}) thỏa mãn (x_1^2 + x_2^2 = 10).
Đề bài
Tìm m để phương trình \({x^2} + 4x + m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
Phương pháp giải - Xem chi tiết
+ Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).
+ Biến đổi \(x_1^2 + x_2^2 = \left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\).
+ Thay \({x_1} + {x_2};{x_1}.{x_2}\) đã tính theo định lí Viète vào biểu thức vừa biến đổi, ta được phương trình ẩn m, từ đó tìm m, đối chiếu với điều kiện của m và đưa ra kết luận.
Lời giải chi tiết
Phương trình có nghiệm khi \(\Delta ' = 4 - m \ge 0\), tức là \(m \le 4\). Khi đó, phương trình có hai nghiệm \({x_1},{x_2}\). Theo định lí Viète ta có: \({x_1} + {x_2} = - 4;{x_1}.{x_2} = m\).
Do đó:
\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \\= {\left( { - 4} \right)^2} - 2m = 16 - 2m = 10\)
suy ra, \(2m = 6\), hay \(m = 3\) (thỏa mãn điều kiện để phương trình có nghiệm).
Vậy với \(m = 3\) thì phương trình đã cho có hai nghiệm thỏa mãn yêu cầu đề bài.
Bài 8 trang 24 Vở thực hành Toán 9 tập 2 thường xoay quanh việc xác định hệ số góc và tung độ gốc của đường thẳng, hoặc tìm điều kiện để đường thẳng song song, vuông góc, cắt nhau. Để giải quyết bài toán này hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về hàm số bậc nhất, bao gồm:
Để minh họa, chúng ta sẽ xem xét một ví dụ cụ thể. Giả sử bài toán yêu cầu tìm giá trị của m để đường thẳng y = (m-1)x + 2 song song với đường thẳng y = 2x - 3.
Ngoài dạng bài tập tìm điều kiện song song, vuông góc, bài 8 trang 24 Vở thực hành Toán 9 tập 2 còn có thể xuất hiện các dạng bài tập sau:
Để giải nhanh và hiệu quả các bài tập về hàm số bậc nhất, học sinh nên:
Ví dụ 1: Tìm giá trị của m để đường thẳng y = (2m+1)x - 3 vuông góc với đường thẳng y = -x + 1.
Giải: Hệ số góc của đường thẳng y = (2m+1)x - 3 là (2m+1), và hệ số góc của đường thẳng y = -x + 1 là -1. Để hai đường thẳng vuông góc, ta có (2m+1) * (-1) = -1. Giải phương trình này, ta được m = 0.
Ví dụ 2: Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y = -2x + 5.
Giải: Giải hệ phương trình: { y = x + 2 y = -2x + 5 Ta được x = 1 và y = 3. Vậy tọa độ giao điểm là (1; 3).
Bài 8 trang 24 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Bằng cách nắm vững các khái niệm cơ bản, luyện tập thường xuyên và áp dụng các mẹo giải nhanh, học sinh có thể tự tin giải quyết các bài tập tương tự.