Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này tập trung vào việc giải các câu hỏi trắc nghiệm trang 105 Vở thực hành Toán 9, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách cẩn thận, kèm theo các giải thích rõ ràng để bạn có thể hiểu được bản chất của vấn đề.
Độ dài cung ({30^o}) của một đường tròn có đường kính 20cm là A. 5,5cm. B. 5,34cm. C. 4,34cm. D. 5,24cm.
Trả lời Câu 2 trang 105 Vở thực hành Toán 9
Hình quạt tròn bán kính R, ứng với cung \({90^o}\) có diện tích bằng
A. \(\pi {R^2}\).
B. \(\frac{{\pi {R^2}}}{2}\).
C. \(\frac{{\pi {R^2}}}{4}\).
D. \(\frac{{\pi {R^2}}}{8}\).
Phương pháp giải:
Diện tích \({S_q}\) của hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{n}{{360}}.\pi {R^2}\).
Lời giải chi tiết:
Diện tích hình quạt tròn bán kính R, ứng với cung \({90^o}\) là: \({S_q} = \frac{{90}}{{360}}.\pi {R^2} = \frac{{\pi {R^2}}}{4}\)
Chọn C
Trả lời Câu 3 trang 105 Vở thực hành Toán 9
Cho đường tròn (O, 10cm), đường kính AB. Điểm \(M \in \left( O \right)\) sao cho \(\widehat {MAO} = {45^o}\). Diện tích của hình quạt tròn AOM là
A. \(25\pi \;c{m^2}\).
B. \(5\pi \;c{m^2}\).
C. \(50\pi \;c{m^2}\).
D. \(\frac{{25\pi }}{2}\;c{m^2}\).
Phương pháp giải:
Diện tích \({S_q}\) của hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{n}{{360}}.\pi {R^2}\).
Lời giải chi tiết:
Hình quạt tròn AOM có số đo cung bằng \(2.45 = {90^o}\) . Do đó, diện tích hình quạt tròn là: \({S_q} = \frac{{90}}{{360}}.\pi {.10^2} = 25\pi \;\left( {c{m^2}} \right)\)
Chọn A
Trả lời Câu 1 trang 105 Vở thực hành Toán 9
Độ dài cung \({30^o}\) của một đường tròn có đường kính 20cm là
A. 5,5cm.
B. 5,34cm.
C. 4,34cm.
D. 5,24cm.
Phương pháp giải:
Độ dài l của cung \({n^o}\) trên đường tròn (O; R) là \(l = \frac{n}{{180}}.\pi R\).
Lời giải chi tiết:
Độ dài cung \({30^o}\) của một đường tròn có đường kính 20cm là: \(l = \frac{{30}}{{180}}.\pi .10 \approx 5,24\left( {cm} \right)\)
Chọn D
Chọn phương án đúng cho mỗi câu sau:
Trả lời Câu 1 trang 105 Vở thực hành Toán 9
Độ dài cung \({30^o}\) của một đường tròn có đường kính 20cm là
A. 5,5cm.
B. 5,34cm.
C. 4,34cm.
D. 5,24cm.
Phương pháp giải:
Độ dài l của cung \({n^o}\) trên đường tròn (O; R) là \(l = \frac{n}{{180}}.\pi R\).
Lời giải chi tiết:
Độ dài cung \({30^o}\) của một đường tròn có đường kính 20cm là: \(l = \frac{{30}}{{180}}.\pi .10 \approx 5,24\left( {cm} \right)\)
Chọn D
Trả lời Câu 2 trang 105 Vở thực hành Toán 9
Hình quạt tròn bán kính R, ứng với cung \({90^o}\) có diện tích bằng
A. \(\pi {R^2}\).
B. \(\frac{{\pi {R^2}}}{2}\).
C. \(\frac{{\pi {R^2}}}{4}\).
D. \(\frac{{\pi {R^2}}}{8}\).
Phương pháp giải:
Diện tích \({S_q}\) của hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{n}{{360}}.\pi {R^2}\).
Lời giải chi tiết:
Diện tích hình quạt tròn bán kính R, ứng với cung \({90^o}\) là: \({S_q} = \frac{{90}}{{360}}.\pi {R^2} = \frac{{\pi {R^2}}}{4}\)
Chọn C
Trả lời Câu 3 trang 105 Vở thực hành Toán 9
Cho đường tròn (O, 10cm), đường kính AB. Điểm \(M \in \left( O \right)\) sao cho \(\widehat {MAO} = {45^o}\). Diện tích của hình quạt tròn AOM là
A. \(25\pi \;c{m^2}\).
B. \(5\pi \;c{m^2}\).
C. \(50\pi \;c{m^2}\).
D. \(\frac{{25\pi }}{2}\;c{m^2}\).
Phương pháp giải:
Diện tích \({S_q}\) của hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{n}{{360}}.\pi {R^2}\).
Lời giải chi tiết:
Hình quạt tròn AOM có số đo cung bằng \(2.45 = {90^o}\) . Do đó, diện tích hình quạt tròn là: \({S_q} = \frac{{90}}{{360}}.\pi {.10^2} = 25\pi \;\left( {c{m^2}} \right)\)
Chọn A
Trả lời Câu 4 trang 105 Vở thực hành Toán 9
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2cm) và (O; 4cm) là
A. \(2\pi \;c{m^2}\).
B. \(4\pi \;c{m^2}\).
C. \(12\pi \;c{m^2}\).
D. \(16\pi \;c{m^2}\).
Phương pháp giải:
Diện tích \({S_v}\) của hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính R và r là: \({S_v} = \pi \left( {{R^2} - {r^2}} \right)\) (với \(R > r\)).
Lời giải chi tiết:
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2cm) và (O; 4cm) là: \({S_v} = \pi \left( {{4^2} - {2^2}} \right) = 12\pi \left( {c{m^2}} \right)\)
Chọn C
Trả lời Câu 4 trang 105 Vở thực hành Toán 9
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2cm) và (O; 4cm) là
A. \(2\pi \;c{m^2}\).
B. \(4\pi \;c{m^2}\).
C. \(12\pi \;c{m^2}\).
D. \(16\pi \;c{m^2}\).
Phương pháp giải:
Diện tích \({S_v}\) của hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính R và r là: \({S_v} = \pi \left( {{R^2} - {r^2}} \right)\) (với \(R > r\)).
Lời giải chi tiết:
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2cm) và (O; 4cm) là: \({S_v} = \pi \left( {{4^2} - {2^2}} \right) = 12\pi \left( {c{m^2}} \right)\)
Chọn C
Trang 105 Vở thực hành Toán 9 thường chứa các bài tập trắc nghiệm liên quan đến một chủ đề cụ thể đã được học. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt. Bài viết này sẽ đi sâu vào từng câu hỏi trắc nghiệm, cung cấp lời giải chi tiết và phân tích các phương pháp giải hiệu quả.
Để hiểu rõ hơn về nội dung của trang 105, chúng ta cần xác định chủ đề chính mà các câu hỏi trắc nghiệm tập trung vào. Thông thường, đây có thể là các chủ đề như:
Dưới đây là lời giải chi tiết cho từng câu hỏi trắc nghiệm trên trang 105 Vở thực hành Toán 9. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để bạn có thể hiểu được logic của bài toán.
Cho phương trình x2 - 5x + 6 = 0. Nghiệm của phương trình là:
Lời giải:
Ta có phương trình x2 - 5x + 6 = 0. Sử dụng công thức nghiệm của phương trình bậc hai, ta có:
Δ = b2 - 4ac = (-5)2 - 4 * 1 * 6 = 25 - 24 = 1
x1 = (-b + √Δ) / 2a = (5 + 1) / 2 = 3
x2 = (-b - √Δ) / 2a = (5 - 1) / 2 = 2
Vậy, nghiệm của phương trình là x = 2 và x = 3. Đáp án đúng là A và B.
Đồ thị hàm số y = x2 - 4x + 3 có đỉnh là:
Lời giải:
Hàm số y = x2 - 4x + 3 có dạng y = ax2 + bx + c, với a = 1, b = -4, c = 3.
Hoành độ đỉnh của parabol là x0 = -b / 2a = -(-4) / (2 * 1) = 2
Tung độ đỉnh của parabol là y0 = x02 - 4x0 + 3 = 22 - 4 * 2 + 3 = 4 - 8 + 3 = -1
Vậy, đỉnh của parabol là (2, -1). Đáp án đúng là A.
Để giải nhanh các bài tập trắc nghiệm Toán 9, bạn có thể áp dụng một số mẹo sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải các câu hỏi trắc nghiệm trang 105 Vở thực hành Toán 9 một cách hiệu quả. Hãy luyện tập thường xuyên để nâng cao khả năng giải toán của bạn.
Công thức | Mô tả |
---|---|
Δ = b2 - 4ac | Tính delta của phương trình bậc hai |
x1,2 = (-b ± √Δ) / 2a | Tính nghiệm của phương trình bậc hai |
x0 = -b / 2a | Tính hoành độ đỉnh của parabol |