Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 9. Bài viết này tập trung vào việc giải các câu hỏi trắc nghiệm trang 53 trong Vở thực hành Toán 9, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập trắc nghiệm đôi khi có thể gặp khó khăn. Do đó, chúng tôi đã biên soạn lời giải một cách cẩn thận, kèm theo các giải thích rõ ràng để các em có thể hiểu được bản chất của vấn đề.
Xét 4 khẳng định sau: (1) (sqrt {{a^2}{b^2}} = left| {ab} right|), (a, b tùy ý); (2) (sqrt {{a^2}{b^2}} = ab), (a, b tùy ý); (3) (sqrt {{a^2}{b^2}} = left| a right|left| b right|), (a, b tùy ý); (4) (sqrt {{a^2}{b^2}} = left( { - a} right)left( { - b} right)), (a, b tùy ý); Trong 4 khẳng định trên, số khẳng định đúng là: A. 1. B. 2. C. 3. D. 4.
Trả lời Câu 1 trang 53 Vở thực hành Toán 9
Xét 4 khẳng định sau:
(1) \(\sqrt {{a^2}{b^2}} = \left| {ab} \right|\), (a, b tùy ý);
(2) \(\sqrt {{a^2}{b^2}} = ab\), (a, b tùy ý);
(3) \(\sqrt {{a^2}{b^2}} = \left| a \right|\left| b \right|\), (a, b tùy ý);
(4) \(\sqrt {{a^2}{b^2}} = \left( { - a} \right)\left( { - b} \right)\), (a, b tùy ý);
Trong 4 khẳng định trên, số khẳng định đúng là:
A. 1.
B. 2.
C. 3.
D. 4.
Phương pháp giải:
Với a, b tùy ý ta có:
\(\sqrt {{a^2}{b^2}} = \sqrt {{{\left( {ab} \right)}^2}} = \left| {ab} \right|;\)
\(\sqrt {{a^2}{b^2}} = \sqrt {{a^2}} .\sqrt {{b^2}} = \left| a \right|\left| b \right|\).
Lời giải chi tiết:
Với a, b tùy ý ta có:
\(\sqrt {{a^2}{b^2}} = \sqrt {{{\left( {ab} \right)}^2}} = \left| {ab} \right|;\)
\(\sqrt {{a^2}{b^2}} = \sqrt {{a^2}} .\sqrt {{b^2}} = \left| a \right|\left| b \right|\).
Do đó, có 2 khẳng định đúng.
Chọn B
Trả lời Câu 3 trang 53 Vở thực hành Toán 9
Chọn khẳng định đúng:
A. \(\sqrt {64{a^4}{b^6}} = 8{a^2}{b^3}\).
B. \(\sqrt {64{a^4}{b^6}} = 8{\left( { - a} \right)^2}{b^3}\).
C. \(\sqrt {64{a^4}{b^6}} = 8{a^2}{\left( { - b} \right)^3}\).
D. \(\sqrt {64{a^4}{b^6}} = 8{a^2}\left| {{b^3}} \right|\).
Phương pháp giải:
Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \).
Lời giải chi tiết:
\(\sqrt {64{a^4}{b^6}} = \sqrt {{8^2}.{{\left( {{a^2}} \right)}^2}.{{\left( {{b^3}} \right)}^2}} \\= \sqrt {{8^2}} .\sqrt {{{\left( {{a^2}} \right)}^2}} .\sqrt {{{\left( {{b^3}} \right)}^2}} = 8{a^2}\left| {{b^3}} \right|\)
Chọn D
Trả lời Câu 2 trang 53 Vở thực hành Toán 9
Trong các khẳng định sau, khẳng định nào đúng?
A. \(\sqrt { - 5{a^3}} = a\sqrt { - 5a} \left( {a \in \mathbb{R}} \right)\).
B. \(\sqrt { - 5{a^3}} = - a\sqrt {5a} \left( {a \in \mathbb{R}} \right)\).
C. \(\sqrt { - 5{a^3}} = - a\sqrt { - 5a} \left( {a < 0} \right)\).
D. \(\sqrt { - 5{a^3}} = - a\sqrt {5a} \left( {a < 0} \right)\).
Phương pháp giải:
Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \).
Lời giải chi tiết:
Ta có:
\(\sqrt { - 5{a^3}} = \sqrt { - 5a.{a^2}} \\= \left| a \right|\sqrt { - 5a} \\= - a\sqrt { - 5a} \left( {do\;a < 0} \right)\)
Chọn C
Chọn phương án đúng trong mỗi câu sau:
Trả lời Câu 1 trang 53 Vở thực hành Toán 9
Xét 4 khẳng định sau:
(1) \(\sqrt {{a^2}{b^2}} = \left| {ab} \right|\), (a, b tùy ý);
(2) \(\sqrt {{a^2}{b^2}} = ab\), (a, b tùy ý);
(3) \(\sqrt {{a^2}{b^2}} = \left| a \right|\left| b \right|\), (a, b tùy ý);
(4) \(\sqrt {{a^2}{b^2}} = \left( { - a} \right)\left( { - b} \right)\), (a, b tùy ý);
Trong 4 khẳng định trên, số khẳng định đúng là:
A. 1.
B. 2.
C. 3.
D. 4.
Phương pháp giải:
Với a, b tùy ý ta có:
\(\sqrt {{a^2}{b^2}} = \sqrt {{{\left( {ab} \right)}^2}} = \left| {ab} \right|;\)
\(\sqrt {{a^2}{b^2}} = \sqrt {{a^2}} .\sqrt {{b^2}} = \left| a \right|\left| b \right|\).
Lời giải chi tiết:
Với a, b tùy ý ta có:
\(\sqrt {{a^2}{b^2}} = \sqrt {{{\left( {ab} \right)}^2}} = \left| {ab} \right|;\)
\(\sqrt {{a^2}{b^2}} = \sqrt {{a^2}} .\sqrt {{b^2}} = \left| a \right|\left| b \right|\).
Do đó, có 2 khẳng định đúng.
Chọn B
Trả lời Câu 2 trang 53 Vở thực hành Toán 9
Trong các khẳng định sau, khẳng định nào đúng?
A. \(\sqrt { - 5{a^3}} = a\sqrt { - 5a} \left( {a \in \mathbb{R}} \right)\).
B. \(\sqrt { - 5{a^3}} = - a\sqrt {5a} \left( {a \in \mathbb{R}} \right)\).
C. \(\sqrt { - 5{a^3}} = - a\sqrt { - 5a} \left( {a < 0} \right)\).
D. \(\sqrt { - 5{a^3}} = - a\sqrt {5a} \left( {a < 0} \right)\).
Phương pháp giải:
Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \).
Lời giải chi tiết:
Ta có:
\(\sqrt { - 5{a^3}} = \sqrt { - 5a.{a^2}} \\= \left| a \right|\sqrt { - 5a} \\= - a\sqrt { - 5a} \left( {do\;a < 0} \right)\)
Chọn C
Trả lời Câu 3 trang 53 Vở thực hành Toán 9
Chọn khẳng định đúng:
A. \(\sqrt {64{a^4}{b^6}} = 8{a^2}{b^3}\).
B. \(\sqrt {64{a^4}{b^6}} = 8{\left( { - a} \right)^2}{b^3}\).
C. \(\sqrt {64{a^4}{b^6}} = 8{a^2}{\left( { - b} \right)^3}\).
D. \(\sqrt {64{a^4}{b^6}} = 8{a^2}\left| {{b^3}} \right|\).
Phương pháp giải:
Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \).
Lời giải chi tiết:
\(\sqrt {64{a^4}{b^6}} = \sqrt {{8^2}.{{\left( {{a^2}} \right)}^2}.{{\left( {{b^3}} \right)}^2}} \\= \sqrt {{8^2}} .\sqrt {{{\left( {{a^2}} \right)}^2}} .\sqrt {{{\left( {{b^3}} \right)}^2}} = 8{a^2}\left| {{b^3}} \right|\)
Chọn D
Trang 53 Vở thực hành Toán 9 thường chứa các câu hỏi trắc nghiệm liên quan đến các chủ đề như hàm số bậc nhất, hệ phương trình bậc nhất hai ẩn, phương trình bậc hai một ẩn, và các ứng dụng thực tế của đại số. Dưới đây là giải chi tiết từng câu hỏi:
Hàm số y = 2x + 3 có đồ thị là một đường thẳng:
Giải: Đáp án đúng là (3). Hàm số y = 2x + 3 có dạng y = ax + b, trong đó a là hệ số góc. Vậy hệ số góc của hàm số là 2.
Nghiệm của hệ phương trình {x + y = 5 x - y = 1
Giải: Đáp án đúng là (3, 2). Cộng hai phương trình ta được 2x = 6 => x = 3. Thay x = 3 vào phương trình x + y = 5 ta được 3 + y = 5 => y = 2.
Để giải tốt các câu hỏi trắc nghiệm trang 53 Vở thực hành Toán 9, các em cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp các em giải nhanh các câu hỏi trắc nghiệm Toán 9:
Để nâng cao khả năng giải các câu hỏi trắc nghiệm Toán 9, các em nên luyện tập thường xuyên với các bài tập khác nhau. Các em có thể tìm thấy các bài tập luyện tập trên sách giáo khoa, vở bài tập, các trang web học toán online, và các ứng dụng học tập.
Hy vọng rằng với lời giải chi tiết và các kiến thức, mẹo giải đã cung cấp, các em sẽ tự tin hơn trong việc giải các câu hỏi trắc nghiệm trang 53 Vở thực hành Toán 9. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!