Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trắc nghiệm Toán 9. Bài viết này tập trung vào việc giải các câu hỏi trắc nghiệm trang 41 trong Vở thực hành Toán 9, giúp các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả.
Chúng tôi hiểu rằng việc giải các bài tập trắc nghiệm có thể gặp nhiều khó khăn, đặc biệt là đối với những em học sinh mới bắt đầu làm quen với dạng bài này. Vì vậy, chúng tôi đã biên soạn bài viết này với mục đích cung cấp cho các em những lời giải dễ hiểu, logic và đầy đủ.
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất ẩn x? A. ( - 2{x^2} + 1 > 0). B. ( - 3x < x + 1). C. (3x + 2 > 0.x - 1). D. ( - 2x + 3 le 0).
Trả lời Câu 1 trang 41 Vở thực hành Toán 9
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất ẩn x?
A. \( - 2{x^2} + 1 > 0\).
B. \( - 3x < x + 1\).
C. \(3x + 2 > 0.x - 1\).
D. \( - 2x + 3 \le 0\).
Phương pháp giải:
Bất phương trình có dạng \(ax + b < 0\) (hoặc \(ax + b \le 0,ax + b > 0,ax + b \ge 0\)) trong đó a, b là hai số đã cho, \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn x.
Lời giải chi tiết:
\( - 2x + 3 \le 0\) là bất phương trình bậc nhất ẩn x.
Chọn D
Trả lời Câu 3 trang 41 Vở thực hành Toán 9
Nghiệm của bất phương trình \(2x + 2 \ge 4x + 1\) là
A. \(x > \frac{1}{2}\).
B. \(x = \frac{1}{2}\).
C. \(x \le \frac{1}{2}\).
D. \(x \ge \frac{1}{2}\).
Phương pháp giải:
- Đưa bất phương trình về dạng bất phương trình bậc nhất một ẩn \(ax + b \ge 0\left( {a \ne 0} \right)\).
- Cách giải bất phương trình bậc nhất một ẩn \(ax + b \ge 0\left( {a \ne 0} \right)\):
+ Nếu \(a > 0\) thì \(x \ge - \frac{b}{a}\);
+ Nếu \(a < 0\) thì \(x \le - \frac{b}{a}\).
Lời giải chi tiết:
\(2x + 2 \ge 4x + 1\)
\(2x - 4x \ge - 2 + 1\)
\( - 2x \ge - 1\)
\(x \le \frac{1}{2}\)
Chọn C
Trả lời Câu 2 trang 41 Vở thực hành Toán 9
Nghiệm của bất phương trình \( - 2x > 0\) là
A. \(x > 0\).
B. \(x < 0\).
C. \(x \ge 0\).
D. \(x \le 0\).
Phương pháp giải:
Cách giải bất phương trình bậc nhất một ẩn \(ax + b > 0\left( {a \ne 0} \right)\):
+ Nếu \(a > 0\) thì \(x > - \frac{b}{a}\);
+ Nếu \(a < 0\) thì \(x < - \frac{b}{a}\).
Lời giải chi tiết:
\( - 2x > 0\) nên \(x < 0\) (do \( - 2 < 0\))
Chọn B
Chọn phương án đúng trong mỗi câu sau:
Trả lời Câu 1 trang 41 Vở thực hành Toán 9
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất ẩn x?
A. \( - 2{x^2} + 1 > 0\).
B. \( - 3x < x + 1\).
C. \(3x + 2 > 0.x - 1\).
D. \( - 2x + 3 \le 0\).
Phương pháp giải:
Bất phương trình có dạng \(ax + b < 0\) (hoặc \(ax + b \le 0,ax + b > 0,ax + b \ge 0\)) trong đó a, b là hai số đã cho, \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn x.
Lời giải chi tiết:
\( - 2x + 3 \le 0\) là bất phương trình bậc nhất ẩn x.
Chọn D
Trả lời Câu 2 trang 41 Vở thực hành Toán 9
Nghiệm của bất phương trình \( - 2x > 0\) là
A. \(x > 0\).
B. \(x < 0\).
C. \(x \ge 0\).
D. \(x \le 0\).
Phương pháp giải:
Cách giải bất phương trình bậc nhất một ẩn \(ax + b > 0\left( {a \ne 0} \right)\):
+ Nếu \(a > 0\) thì \(x > - \frac{b}{a}\);
+ Nếu \(a < 0\) thì \(x < - \frac{b}{a}\).
Lời giải chi tiết:
\( - 2x > 0\) nên \(x < 0\) (do \( - 2 < 0\))
Chọn B
Trả lời Câu 3 trang 41 Vở thực hành Toán 9
Nghiệm của bất phương trình \(2x + 2 \ge 4x + 1\) là
A. \(x > \frac{1}{2}\).
B. \(x = \frac{1}{2}\).
C. \(x \le \frac{1}{2}\).
D. \(x \ge \frac{1}{2}\).
Phương pháp giải:
- Đưa bất phương trình về dạng bất phương trình bậc nhất một ẩn \(ax + b \ge 0\left( {a \ne 0} \right)\).
- Cách giải bất phương trình bậc nhất một ẩn \(ax + b \ge 0\left( {a \ne 0} \right)\):
+ Nếu \(a > 0\) thì \(x \ge - \frac{b}{a}\);
+ Nếu \(a < 0\) thì \(x \le - \frac{b}{a}\).
Lời giải chi tiết:
\(2x + 2 \ge 4x + 1\)
\(2x - 4x \ge - 2 + 1\)
\( - 2x \ge - 1\)
\(x \le \frac{1}{2}\)
Chọn C
Trang 41 Vở thực hành Toán 9 thường chứa các câu hỏi trắc nghiệm liên quan đến các chủ đề đã học trong chương. Để giải quyết hiệu quả các bài tập này, học sinh cần nắm vững kiến thức lý thuyết, hiểu rõ các định nghĩa, định lý và công thức liên quan. Đồng thời, cần rèn luyện kỹ năng phân tích đề bài, loại trừ các đáp án sai và lựa chọn đáp án đúng nhất.
Dưới đây là giải chi tiết từng câu hỏi trắc nghiệm trang 41 Vở thực hành Toán 9. Chúng tôi sẽ trình bày lời giải một cách rõ ràng, dễ hiểu, kèm theo các giải thích chi tiết để giúp các em hiểu được bản chất của vấn đề.
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
Giải:
Áp dụng định lý Pitago vào tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra BC = √25 = 5cm
Vậy đáp án đúng là A. 5cm
Cho phương trình x2 - 5x + 6 = 0. Nghiệm của phương trình là:
Giải:
Ta có phương trình x2 - 5x + 6 = 0
Δ = b2 - 4ac = (-5)2 - 4(1)(6) = 25 - 24 = 1
x1 = (-b + √Δ) / 2a = (5 + 1) / 2 = 3
x2 = (-b - √Δ) / 2a = (5 - 1) / 2 = 2
Vậy đáp án đúng là A. x = 2 và x = 3
Các câu hỏi trắc nghiệm trang 41 Vở thực hành Toán 9 thường thuộc các dạng sau:
Để học tập và ôn luyện Toán 9 hiệu quả, các em có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho các em những kiến thức và kỹ năng cần thiết để giải quyết các câu hỏi trắc nghiệm trang 41 Vở thực hành Toán 9 một cách hiệu quả. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!