Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 83 vở thực hành Toán 9

Giải bài 8 trang 83 vở thực hành Toán 9

Giải bài 8 trang 83 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 83 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục môn Toán.

Một người đứng cách gốc cây 20m nhìn thấy ngọn cây với góc ({36^o}) so với phương nằm ngang. Biết mắt người ấy cách mặt đất 1,7m và cây mọc thẳng đứng (H.4.21a). Tính chiều cao của cây (làm tròn đến chữ số thập phân thứ nhất).

Đề bài

Một người đứng cách gốc cây 20m nhìn thấy ngọn cây với góc \({36^o}\) so với phương nằm ngang. Biết mắt người ấy cách mặt đất 1,7m và cây mọc thẳng đứng (H.4.21a). Tính chiều cao của cây (làm tròn đến chữ số thập phân thứ nhất).

Giải bài 8 trang 83 vở thực hành Toán 9 1

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 83 vở thực hành Toán 9 2

+ Gọi điểm mắt người nhìn là A, ngọn cây là O, gốc cây là H, giao điểm của đường thẳng qua A song song với mặt đất là B. Ta cần tính đoạn OH.

+ Tam giác ABO vuông tại B nên \(OB = AB.\tan \widehat {BAO}\) nên tính được OB.

+ \(OH = BH + OB\), với \(BH = 1,7m\).

Lời giải chi tiết

(H.4.21b)

Giải bài 8 trang 83 vở thực hành Toán 9 3

Gọi điểm mắt người nhìn là A, ngọn cây là O, gốc cây là H, giao điểm của đường thẳng qua A song song với mặt đất là B. Ta cần tính đoạn OH.

Ta có \(AB = 20m\) và tam giác ABO vuông tại B.

Trong tam giác vuông ABO có

\(OB = AB.\tan \widehat {BAO} = 20.\tan {36^o} = 20.\sqrt {5 - 2\sqrt 5 } \approx 14,5\left( m \right)\)

Ta có: \(OH = OB + BH \approx 16,2\left( m \right)\)

Vậy cây cao khoảng 16,2m.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 8 trang 83 vở thực hành Toán 9 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 8 trang 83 Vở thực hành Toán 9: Tổng quan

Bài 8 trang 83 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài 8 trang 83 Vở thực hành Toán 9

Bài 8 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số a của hàm số y = ax + b khi biết đồ thị của hàm số.
  • Dạng 2: Tìm giá trị của x khi biết giá trị của y và ngược lại.
  • Dạng 3: Xác định đường thẳng đi qua hai điểm cho trước.
  • Dạng 4: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Lời giải chi tiết bài 8 trang 83 Vở thực hành Toán 9

Bài 8.1

Cho hàm số y = 2x + 3. Tìm y khi x = -1; x = 0; x = 2.

Lời giải:

Khi x = -1, y = 2*(-1) + 3 = 1.

Khi x = 0, y = 2*0 + 3 = 3.

Khi x = 2, y = 2*2 + 3 = 7.

Bài 8.2

Cho hàm số y = -x + 5. Tìm x khi y = 0; y = 2; y = -3.

Lời giải:

Khi y = 0, -x + 5 = 0 => x = 5.

Khi y = 2, -x + 5 = 2 => x = 3.

Khi y = -3, -x + 5 = -3 => x = 8.

Bài 8.3

Tìm hệ số a của hàm số y = ax + 1, biết rằng đồ thị của hàm số đi qua điểm A(2; 5).

Lời giải:

Vì đồ thị của hàm số đi qua điểm A(2; 5) nên ta có: 5 = a*2 + 1 => 2a = 4 => a = 2.

Bài 8.4

Tìm hệ số a của hàm số y = ax - 2, biết rằng đồ thị của hàm số đi qua điểm B(-1; 3).

Lời giải:

Vì đồ thị của hàm số đi qua điểm B(-1; 3) nên ta có: 3 = a*(-1) - 2 => -a = 5 => a = -5.

Phương pháp giải bài tập hàm số bậc nhất

Để giải các bài tập về hàm số bậc nhất, các em cần nắm vững các kiến thức sau:

  • Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  • Đồ thị của hàm số bậc nhất: Đồ thị của hàm số bậc nhất là một đường thẳng.
  • Cách xác định đường thẳng đi qua hai điểm: Sử dụng công thức tính hệ số góc và phương trình đường thẳng.
  • Ứng dụng của hàm số bậc nhất: Giải các bài toán thực tế liên quan đến sự thay đổi của một đại lượng theo một đại lượng khác.

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng online về hàm số bậc nhất để hiểu rõ hơn về kiến thức này.

Kết luận

Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em sẽ tự tin hơn trong việc giải bài 8 trang 83 Vở thực hành Toán 9 và các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9