Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 93 Vở thực hành Toán 9. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các tài liệu học tập chất lượng và phương pháp giải bài tập hiệu quả.
Cho tam giác ABC vuông tại A, biết (AB = 6cm,BC = 11cm). a) Giải tam giác vuông ABC. b) Tính độ dài đường cao AH, đường phân giác AD. (Kết quả về cạnh làm tròn đến chữ số thập phân thứ nhất, kết quả về góc làm tròn đến độ).
Đề bài
Cho tam giác ABC vuông tại A, biết \(AB = 6cm,BC = 11cm\).
a) Giải tam giác vuông ABC.
b) Tính độ dài đường cao AH, đường phân giác AD.
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ nhất, kết quả về góc làm tròn đến độ).
Phương pháp giải - Xem chi tiết
a) Trong tam giác vuông ABC, ta có: \(A{C^2} = B{C^2} - A{B^2}\) suy ra AC, \(\sin B = \frac{{AC}}{{BC}}\) suy ra góc B, \(\widehat C = {90^o} - \widehat B\) nên tính được góc C.
b) + Trong tam giác vuông ABH, \(\sin B = \frac{{AH}}{{AB}}\) nên tính được AH.
+ Tính được góc BAD, \(\widehat {BAH} = {90^o} - \widehat B\), \(\widehat {HAD} = \widehat {BAD} - \widehat {BAH}\).
+ Trong tam giác ADH vuông tại H, ta có \(\cos \widehat {HAD} = \frac{{AH}}{{AD}}\) nên tính được AD.
Lời giải chi tiết
(H.4.45)
a) Trong tam giác vuông ABC, ta có
\(A{C^2} = B{C^2} - A{B^2} = {11^2} - {6^2}\), suy ra \(AC \approx 9,2\)
\(\sin B = \frac{{AC}}{{BC}} = \frac{{\sqrt {85} }}{{11}} \approx 0,84\), suy ra \(\widehat B \approx {57^o}\)
Từ đó suy ra \(\widehat C = {90^o} - \widehat B \approx {33^o}\)
b) Trong tam giác vuông ABH, ta có: \(\sin B = \frac{{AH}}{{AB}}\), suy ra \(AH = AB.\sin B \approx 5,0\)
Vì AD là đường phân giác nên \(\widehat {BAD} = \frac{1}{2}\widehat {BAC} = {45^o}\)
Trong tam giác vuông ABH, ta có \(\widehat {BAH} = {90^o} - \widehat B = {33^o}\)
Do đó, \(\widehat {HAD} = \widehat {BAD} - \widehat {BAH} = {45^o} - {33^o} = {12^o}\)
Trong tam giác ADH vuông tại H, ta có \(\cos \widehat {HAD} = \frac{{AH}}{{AD}}\), suy ra \(AD = \frac{{AH}}{{\cos \widehat {HAD}}} \approx 5,1\)
Bài 6 trang 93 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 6 trang 93 Vở thực hành Toán 9, chúng ta sẽ đi vào giải chi tiết từng bài tập cụ thể. (Lưu ý: Vì không có nội dung bài tập cụ thể, phần này sẽ trình bày phương pháp chung và ví dụ minh họa)
Đề bài: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số đi qua hai điểm A(1; 2) và B(-1; 0).
Giải:
Đề bài: Tìm hệ số góc của đường thẳng y = -3x + 5.
Giải:
Hệ số góc của đường thẳng y = -3x + 5 là -3.
Để học tốt môn Toán 9, các em có thể tham khảo các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em đã có thể tự tin giải bài 6 trang 93 Vở thực hành Toán 9. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!