Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 45 Vở thực hành Toán 9. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Giải các phương trình sau: a) (frac{x}{{x - 5}} - frac{2}{{x + 5}} = frac{{{x^2}}}{{{x^2} - 25}}); b) (frac{1}{{x + 1}} - frac{x}{{{x^2} - x + 1}} = frac{3}{{{x^3} + 1}}).
Đề bài
Giải các phương trình sau:
a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}}\);
b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\).
Phương pháp giải - Xem chi tiết
Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:
Bước 1. Tìm điều kiện xác định của phương trình.
Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3. Giải phương trình vừa tìm được.
Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.
Lời giải chi tiết
a) ĐKXĐ: \(x \ne - 5\) và \(x \ne 5\).
Quy đồng mẫu hai vế của phương trình, ta được
\(\frac{{x\left( {x + 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} - \frac{{2\left( {x - 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\)
\(\frac{{{x^2} + 5x - 2x + 10}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\)
Suy ra, \({x^2} + 5x - 2x + 10 = {x^2}\) hay \(3x + 10 = 0\), suy ra \(x = \frac{{ - 10}}{3}\) (thỏa mãn ĐKXĐ)
Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 10}}{3}\).
b) ĐKXĐ: \(x \ne - 1\).
Quy đồng mẫu hai vế của phương trình, ta được
\(\frac{{{x^2} - x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)
\(\frac{{{x^2} - x + 1 - {x^2} - x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)
Suy ra \({x^2} - x + 1 - {x^2} - x = 3\) hay \( - 2x + 1 = 3\), suy ra \(x = - 1\) (không thỏa mãn ĐKXĐ)
Vậy phương trình đã cho vô nghiệm.
Bài 2 trang 45 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và ứng dụng của chúng trong giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như hệ số góc, đường thẳng song song, và điều kiện để một điểm thuộc đường thẳng.
Bài 2 trang 45 Vở thực hành Toán 9 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài 2 trang 45 Vở thực hành Toán 9. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 2, trang 45, Vở thực hành Toán 9. Ví dụ:)
Đề bài: Cho đường thẳng y = 2x - 3. Xác định hệ số góc của đường thẳng.
Lời giải:
Phương trình đường thẳng có dạng y = ax + b, trong đó a là hệ số góc. So sánh với phương trình y = 2x - 3, ta thấy a = 2. Vậy hệ số góc của đường thẳng là 2.
Đề bài: Tìm phương trình đường thẳng đi qua điểm A(1; 2) và có hệ số góc m = -1.
Lời giải:
Phương trình đường thẳng có dạng y = mx + b. Thay m = -1 và tọa độ điểm A(1; 2) vào phương trình, ta được:
2 = -1 * 1 + b
=> b = 3
Vậy phương trình đường thẳng là y = -x + 3.
Để giải bài tập về hàm số bậc nhất một cách hiệu quả, các em cần lưu ý những điều sau:
Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 2 trang 45 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất và ứng dụng của chúng. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài tập tương tự.
Giaitoan.edu.vn sẽ tiếp tục đồng hành cùng các em trong quá trình học tập môn Toán. Chúc các em học tốt!