Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 75 vở thực hành Toán 9

Giải bài 9 trang 75 vở thực hành Toán 9

Giải bài 9 trang 75 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 75 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Cho tam giác ABC có (widehat A = {40^o},widehat B = {60^o},AB = 6cm). Hãy tính (làm tròn đến hàng đơn vị): a) Chiều cao AH và cạnh AC; b) Độ dài BH và CH.

Đề bài

Cho tam giác ABC có \(\widehat A = {40^o},\widehat B = {60^o},AB = 6cm\). Hãy tính (làm tròn đến hàng đơn vị):

a) Chiều cao AH và cạnh AC;

b) Độ dài BH và CH.

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 75 vở thực hành Toán 9 1

a) Trong tam giác vuông ABH vuông tại H, ta có: \(\sin \widehat {ABH} = \frac{{AH}}{{AB}}\) tính được AH.

Xét tam giác ABC có \(\widehat {ACB} = {180^o} - \widehat {ABC} - \widehat {BAC}\)

Trong tam giác vuông ACH vuông tại H, ta có: \(\sin \widehat {ACH} = \frac{{AH}}{{AC}}\) tính được AC.

b) Ta có: \(\tan \widehat {ACH} = \frac{{AH}}{{CH}}\), nên tính được CH, \(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\), nên tính được BH.

Lời giải chi tiết

(H.4.10)

Giải bài 9 trang 75 vở thực hành Toán 9 2

a) Trong tam giác vuông ABH vuông tại H, ta có: \(\sin \widehat {ABH} = \frac{{AH}}{{AB}}\) nên \(AH = AB.\sin \widehat {ABH} = 6.\sin {60^o} \approx 5\left( {cm} \right)\)

Xét tam giác ABC có \(\widehat {ACB} = {180^o} - \widehat {ABC} - \widehat {BAC} = {80^o}\)

Trong tam giác vuông ACH vuông tại H, ta có: \(\sin \widehat {ACH} = \frac{{AH}}{{AC}}\) nên \(AC = \frac{{AH}}{{\sin \widehat {ACH}}} = \frac{{6\sin {{60}^o}}}{{\sin {{80}^o}}} \approx 5\left( {cm} \right)\)

b) Ta có: \(\tan \widehat {ACH} = \frac{{AH}}{{CH}}\), nên \(CH = \frac{{AH}}{{\tan \widehat {ACH}}} = \frac{{3\sqrt 3 }}{{\tan {{80}^o}}} \approx 1\)

\(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\), nên \(BH = \frac{{AH}}{{\tan \widehat {ABH}}} = \frac{{3\sqrt 3 }}{{\tan {{60}^o}}} = 3\left( {cm} \right)\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 9 trang 75 vở thực hành Toán 9 đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 9 trang 75 Vở thực hành Toán 9: Tổng quan

Bài 9 trang 75 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài 9 trang 75 Vở thực hành Toán 9

Bài 9 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số a của hàm số y = ax + b khi biết đồ thị của hàm số.
  • Dạng 2: Tìm giá trị của x khi biết giá trị của y và hàm số y = ax + b.
  • Dạng 3: Xác định hàm số y = ax + b khi biết hai điểm mà đồ thị của hàm số đi qua.
  • Dạng 4: Ứng dụng hàm số bậc nhất vào giải quyết các bài toán thực tế.

Lời giải chi tiết bài 9 trang 75 Vở thực hành Toán 9

Bài 9.1

Cho hàm số y = 2x - 3. Tìm x khi y = 5.

Lời giải:

Thay y = 5 vào hàm số y = 2x - 3, ta có:

5 = 2x - 3

2x = 8

x = 4

Vậy, khi y = 5 thì x = 4.

Bài 9.2

Cho hàm số y = -x + 1. Tìm y khi x = -2.

Lời giải:

Thay x = -2 vào hàm số y = -x + 1, ta có:

y = -(-2) + 1

y = 2 + 1

y = 3

Vậy, khi x = -2 thì y = 3.

Bài 9.3

Xác định hệ số a của hàm số y = ax + 1, biết rằng đồ thị của hàm số đi qua điểm A(1; 3).

Lời giải:

Vì đồ thị của hàm số y = ax + 1 đi qua điểm A(1; 3) nên tọa độ của điểm A thỏa mãn phương trình của hàm số.

Thay x = 1 và y = 3 vào hàm số y = ax + 1, ta có:

3 = a(1) + 1

a = 2

Vậy, hệ số a của hàm số là 2.

Bài 9.4

Xác định hàm số y = ax + b, biết rằng đồ thị của hàm số đi qua hai điểm A(0; 2) và B(1; 4).

Lời giải:

Vì đồ thị của hàm số y = ax + b đi qua điểm A(0; 2) nên ta có:

2 = a(0) + b

b = 2

Vì đồ thị của hàm số y = ax + b đi qua điểm B(1; 4) nên ta có:

4 = a(1) + b

4 = a + 2

a = 2

Vậy, hàm số cần tìm là y = 2x + 2.

Mẹo giải bài tập hàm số bậc nhất

  • Nắm vững các khái niệm cơ bản về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, hệ số góc, giao điểm với trục tọa độ.
  • Luyện tập thường xuyên các dạng bài tập khác nhau để làm quen với các phương pháp giải.
  • Sử dụng các công cụ hỗ trợ như đồ thị hàm số để kiểm tra lại kết quả.
  • Đọc kỹ đề bài và xác định đúng các thông tin cần thiết để giải bài.

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh đã có thể tự tin giải quyết bài 9 trang 75 Vở thực hành Toán 9 một cách hiệu quả. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9