Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 22 Vở thực hành Toán 9 tập 2. Bài học này thuộc chương trình đại số lớp 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải dễ hiểu, chi tiết từng bước, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho phương trình ({x^2} - x - 1 = 0). Không giải phương trình, hãy tính: a) Tổng và tích các nghiệm. b) Tổng các nghịch đảo của các nghiệm.
Đề bài
Cho phương trình \({x^2} - x - 1 = 0\). Không giải phương trình, hãy tính:
a) Tổng và tích các nghiệm.
b) Tổng các nghịch đảo của các nghiệm.
Phương pháp giải - Xem chi tiết
a) Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
+ Tính biệt thức \(\Delta = {b^2} - 4ac\).
+ Nếu \(\Delta \ge 0\) thì áp dụng định lí Viète để tính tổng và tích các nghiệm: \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\)
b) Biến đổi \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}}\) (*), thay \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\) vào biểu thức (*) để tính.
Lời giải chi tiết
Ta có: \(\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 1} \right) = 5 > 0\).
Do đó, phương trình có hai nghiệm \({x_1},{x_2}\).
a) Áp dụng định lí Viète ta có:
\({x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 1}}{1} = 1;\\{x_1}.{x_2} = \frac{c}{a} = \frac{{ - 1}}{1} = - 1.\)
b) Ta có:
\(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{1}{{ - 1}} = - 1\).
Bài 2 trang 22 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong quá trình ôn tập về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để xác định các yếu tố của hàm số, vẽ đồ thị và giải các bài toán liên quan đến hàm số.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 22 Vở thực hành Toán 9 tập 2, các em cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 2:
Để xác định hệ số a, b, các em có thể sử dụng các phương pháp sau:
Để vẽ đồ thị của hàm số y = ax + b, các em cần:
Để tìm tọa độ giao điểm của hai đường thẳng, các em cần:
Giả sử chúng ta có hàm số y = 2x - 1. Để vẽ đồ thị của hàm số này, chúng ta có thể xác định hai điểm:
Nối hai điểm A và B lại với nhau, ta được đồ thị của hàm số y = 2x - 1.
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự trong Vở thực hành Toán 9 tập 2 và các tài liệu tham khảo khác.
Bài 2 trang 22 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp các em ôn tập và củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.