Logo Header
  1. Môn Toán
  2. Giải bài 25 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 25 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 25 trang 50 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 25 trang 50 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 25 trang 50 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng là 480.

Đề bài

Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng là 480.

Phương pháp giải - Xem chi tiếtGiải bài 25 trang 50 sách bài tập toán 11 - Cánh diều 1

Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1},{u_2},{u_3},{u_4},{u_5}\).

Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 40\\u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = 480\end{array} \right.\)

Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để đưa về hệ phương trình ẩn \({u_1}\) và \(d\).

Lời giải chi tiết

Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1},{u_2},{u_3},{u_4},{u_5}\).

Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 40\\u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = 480\end{array} \right.\)

Do \({u_n} = {u_1} + \left( {n - 1} \right)d\), nên ta có:

\({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = {u_1} + {u_1} + d + {u_1} + 2d + {u_1} + 3d + {u_1} + 4d = 5{u_1} + 10d\)

Ta suy ra \(5{u_1} + 10d = 40 \Leftrightarrow {u_1} + 2d = 8 \Leftrightarrow {u_1} = 8 - 2d\) (1)

Mặt khác, ta lại có:

\(u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = u_1^2 + {\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 2d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} + {\left( {{u_1} + 4d} \right)^2}\)

\( = 5u_1^2 + 20{u_1}d + 30{d^2}\)

Ta suy ra \(5u_1^2 + 20{u_1}d + 30{d^2} = 480 \Leftrightarrow u_1^2 + 4{u_1}d + 6{d^2} = 96\) (2)

Từ (1) và (2) ta suy ra

\({\left( {8 - 2d} \right)^2} + 4d\left( {8 - 2d} \right) + 6{d^2} = 96 \Leftrightarrow 4{d^2} - 32d + 64 + 32d - 8{d^2} + 6{d^2} = 96\)

\( \Leftrightarrow 2{d^2} = 32 \Leftrightarrow d = \pm 4\).

Với \(d = - 4\), ta suy ra \({u_1} = 16\). Từ đó năm số hạng liên tiếp cần tìm là 16, 12, 8, 4, 0.

Với \(d = 4\), ta suy ra \({u_1} = 0\). Từ đó năm số hạng liên tiếp cần tìm là 0, 4, 8, 12, 16.

Vậy năm số hạng liên tiếp của cấp số cộng cần tìm là 0, 4, 8, 12, 16.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 25 trang 50 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 25 trang 50 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết

Bài 25 trang 50 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số bậc hai. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa hàm số bậc hai
  • Đồ thị hàm số bậc hai (parabol)
  • Các yếu tố của parabol (đỉnh, trục đối xứng, tiêu điểm, đường chuẩn)
  • Ứng dụng của hàm số bậc hai trong thực tế

Phần 1: Nội dung bài tập

Bài 25 trang 50 sách bài tập Toán 11 Cánh Diều thường bao gồm các dạng bài tập sau:

  1. Xác định các hệ số a, b, c của hàm số bậc hai.
  2. Tìm tọa độ đỉnh của parabol.
  3. Xác định trục đối xứng của parabol.
  4. Vẽ đồ thị hàm số bậc hai.
  5. Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số).

Phần 2: Giải chi tiết bài 25 trang 50

Để giúp bạn hiểu rõ hơn về cách giải bài 25 trang 50, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 25, trang 50 sách bài tập Toán 11 Cánh Diều. Ví dụ:)

Ví dụ: Giải câu a)

Câu a) yêu cầu tìm tọa độ đỉnh của parabol y = x2 - 4x + 3.

Giải:

Hàm số y = x2 - 4x + 3 có dạng y = ax2 + bx + c với a = 1, b = -4, c = 3.

Tọa độ đỉnh của parabol là:

xđỉnh = -b / 2a = -(-4) / (2 * 1) = 2

yđỉnh = a * xđỉnh2 + b * xđỉnh + c = 1 * 22 - 4 * 2 + 3 = -1

Vậy tọa độ đỉnh của parabol là (2; -1).

Ví dụ: Giải câu b)

(Giải thích tương tự cho câu b và các câu còn lại)

Phần 3: Mở rộng và luyện tập

Sau khi đã nắm vững cách giải bài 25 trang 50, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập và các nguồn tài liệu khác. Điều này sẽ giúp bạn củng cố kiến thức và kỹ năng giải toán.

Dưới đây là một số bài tập luyện tập:

  • Tìm tọa độ đỉnh của các parabol sau: y = 2x2 + 8x + 5; y = -x2 + 6x - 1
  • Vẽ đồ thị của các hàm số sau: y = x2 - 2x + 1; y = -2x2 + 4x - 3
  • Giải các bài toán ứng dụng liên quan đến hàm số bậc hai.

Phần 4: Lưu ý khi giải bài tập về hàm số bậc hai

Khi giải bài tập về hàm số bậc hai, bạn cần lưu ý những điều sau:

  • Nắm vững định nghĩa và các yếu tố của parabol.
  • Sử dụng đúng công thức để tính toán.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nâng cao kỹ năng.

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 25 trang 50 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11