Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 89 sách bài tập toán 11 - Cánh diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 5 trang 89 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
*: Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tính góc giữa hai đường thẳng AD và BC
Đề bài
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tính góc giữa hai đường thẳng AD và BC, biết \(MN = a\sqrt 3 \) và \(AD{\rm{ }} = {\rm{ }}BC = 2a.\)
Phương pháp giải - Xem chi tiết
Dựa vào các cách xác định góc giữa hai đường thẳng đã học để làm.
Lời giải chi tiết
Gọi P là trung điểm của AC.
Ta có: MP, PN lần lượt là đường trung bình của \(\Delta ABC,\Delta ACD.\)
\( \Rightarrow MP//BC,{\rm{ }}PN//AD\) và \(MP = \frac{1}{2}BC = a,{\rm{ }}PN = \frac{1}{2}AD = a.\)
Do đó \(\left( {AD,BC} \right) = \left( {PN,MP} \right).\)
Xét \(\Delta MNP:\)
\(cos\widehat {MPN} = \frac{{M{P^2} + P{N^2} - M{N^2}}}{{2MP.PN}} = \frac{{{a^2} + {a^2} - {{\left( {a\sqrt 3 } \right)}^2}}}{{2a.a}} = - \frac{1}{2} \Rightarrow \widehat {MPN} = {120^0}.\)
Suy ra \(\left( {AD,BC} \right) = \left( {PN,MP} \right) = {180^0} - \widehat {MPN} = {180^0} - {120^0} = {60^0}.\)
Vậy góc giữa hai đường thẳng AD và BC là 600.
Bài 5 trang 89 sách bài tập toán 11 - Cánh diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài 5 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ cùng giải một bài tập cụ thể. Giả sử bài tập yêu cầu:
Cho hai vectơ a = (1; 2; -1) và b = (-2; 0; 3). Tính tích vô hướng của a và b.
Lời giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức:
a ⋅ b = xaxb + yayb + zazb
Thay các giá trị của a và b vào công thức, ta có:
a ⋅ b = (1)(-2) + (2)(0) + (-1)(3) = -2 + 0 - 3 = -5
Vậy, tích vô hướng của hai vectơ a và b là -5.
Để học toán 11 hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:
Bài 5 trang 89 sách bài tập toán 11 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về tích vô hướng của hai vectơ. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.