Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 9 sách bài tập toán 11 - Cánh diều

Giải bài 3 trang 9 sách bài tập toán 11 - Cánh diều

Giải bài 3 trang 9 sách bài tập Toán 11 - Cánh Diều

Bài 3 trang 9 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.

giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập này.

Cho mẫu số liệu ghép nhóm thống kê thời gian sử dụng điện thoại trước khi ngủ

Đề bài

Cho mẫu số liệu ghép nhóm thống kê thời gian sử dụng điện thoại trước khi ngủ (đơn vị: phút) của một người trong 120 ngày như ở Bảng 8. Xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu đó (làm tròn các kết quả đến hàng phần mười).

Giải bài 3 trang 9 sách bài tập toán 11 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 9 sách bài tập toán 11 - Cánh diều 2

Áp dụng các công thức đã học để xác định các đại lượng tiêu biểu.

Lời giải chi tiết

Giải bài 3 trang 9 sách bài tập toán 11 - Cánh diều 3

- Thời gian sử dụng điện thoại trung bình trước khi ngủ của một người trong 120 ngày là:

\(\bar x = \frac{{2.13 + 6.29 + 10.48 + 14.22 + 18.8}}{{120}} \approx 9,4\) (phút).

- Ta có: \(\frac{n}{2} = \frac{{120}}{2} = 60\) mà \(42 < 60 < 90.\) Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 60.

Xét nhóm 3 là nhóm [8;12) có \(r = 8,{\rm{ }}d = 4,{\rm{ }}{n_3} = 48\) và nhóm 2 là nhóm [4;8) có \(c{f_2} = 42.\)

Trung vị của mẫu số liệu là:

\({M_e} = r + \left( {\frac{{\frac{n}{2} - c{f_{k - 1}}}}{{{n_k}}}} \right).d = 8 + \left( {\frac{{60 - 42}}{{48}}} \right).4 = 9,5\) (phút).

Tứ phân vị thứ hai của mẫu số liệu là: \({Q_2} = {M_e} = 9,5\) (phút).

- Ta có: \(\frac{n}{4} = \frac{{120}}{4} = 30\) mà \(13 < 30 < 42.\) Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 2 là nhóm [4;8) có \(s = 4,{\rm{ }}h = 4,{\rm{ }}{n_2} = 29\) và nhóm 1 là nhóm [0;4) có \(c{f_1} = 13.\)

Tứ phân vị thứ nhất của mẫu số liệu là:

\({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h = 4 + \left( {\frac{{30 - 13}}{{29}}} \right).4 \approx 6,3\) (phút).

- Ta có: \(\frac{{3n}}{4} = \frac{{3.120}}{4} = 90\) mà \(90 = 90 < 112.\) Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 90.

Xét nhóm 4 là nhóm [12;16) có \(t = 12,{\rm{ }}l = 2,{\rm{ }}{n_4} = 22\) và nhóm 3 là nhóm [8;12) có \(c{f_3} = 90.\)

Tứ phân vị thứ ba của mẫu số liệu là:

\({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l = 12 + \left( {\frac{{90 - 90}}{{22}}} \right).4 = 12\)(phút).

- Ta thấy: Nhóm 3 ứng với nửa khoảng [8;12) là nhóm có tần số lớn nhất với \(u = 8,{\rm{ }}g = 4,{\rm{ }}{n_3} = 48,{\rm{ }}{n_2} = 29,{\rm{ }}{n_4} = 22.\)

Mốt của mẫu số liệu là:

\({M_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g = 8 + \left( {\frac{{48 - 29}}{{2.48 - 29 - 22}}} \right).4 \approx 9,7\) (phút).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 9 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 9 sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết và dễ hiểu

Bài 3 trang 9 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về giới hạn của hàm số. Để giải quyết bài toán này, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các định lý liên quan và các phương pháp tính giới hạn thường gặp.

Nội dung bài tập

Bài 3 yêu cầu học sinh tính giới hạn của các hàm số khi x tiến tới một giá trị cụ thể. Các hàm số có thể là các hàm đa thức, hàm phân thức, hoặc các hàm số phức tạp hơn. Việc xác định đúng dạng của hàm số và áp dụng phương pháp tính giới hạn phù hợp là rất quan trọng.

Phương pháp giải bài tập

Có nhiều phương pháp để tính giới hạn của hàm số, tùy thuộc vào dạng của hàm số. Một số phương pháp thường được sử dụng bao gồm:

  • Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn. Phương pháp này chỉ áp dụng được khi hàm số xác định tại giá trị x đó.
  • Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức và loại bỏ các yếu tố gây khó khăn cho việc tính giới hạn.
  • Phương pháp nhân liên hợp: Nhân cả tử số và mẫu số với liên hợp của biểu thức để loại bỏ các căn thức hoặc biểu thức phức tạp.
  • Phương pháp sử dụng định lý giới hạn: Áp dụng các định lý giới hạn đã học để tính giới hạn của hàm số.

Lời giải chi tiết bài 3 trang 9 sách bài tập Toán 11 - Cánh Diều

Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích lời giải chi tiết cho từng câu hỏi trong bài 3.

Câu a: Tính \lim_{x \to 2} \frac{x^2 - 4}{x - 2}

Lời giải:

  1. Phân tích tử số thành nhân tử: x^2 - 4 = (x - 2)(x + 2)
  2. Rút gọn biểu thức: \frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2
  3. Tính giới hạn: \lim_{x \to 2} (x + 2) = 2 + 2 = 4

Vậy, \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4

Câu b: Tính \lim_{x \to -1} \frac{x^3 + 1}{x + 1}

Lời giải:

  1. Phân tích tử số thành nhân tử: x^3 + 1 = (x + 1)(x^2 - x + 1)
  2. Rút gọn biểu thức: \frac{x^3 + 1}{x + 1} = \frac{(x + 1)(x^2 - x + 1)}{x + 1} = x^2 - x + 1
  3. Tính giới hạn: \lim_{x \to -1} (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3

Vậy, \lim_{x \to -1} \frac{x^3 + 1}{x + 1} = 3

Lưu ý khi giải bài tập về giới hạn

Khi giải bài tập về giới hạn, học sinh cần lưu ý một số điều sau:

  • Xác định đúng dạng của hàm số và áp dụng phương pháp tính giới hạn phù hợp.
  • Kiểm tra xem hàm số có xác định tại giá trị x đó hay không.
  • Sử dụng các định lý giới hạn một cách chính xác.
  • Rút gọn biểu thức một cách cẩn thận để tránh sai sót.

Ứng dụng của kiến thức về giới hạn

Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học và khoa học kỹ thuật, bao gồm:

  • Tính đạo hàm và tích phân.
  • Nghiên cứu sự hội tụ của dãy số và chuỗi số.
  • Giải quyết các bài toán về vật lý, kinh tế, và các lĩnh vực khác.

Hy vọng rằng với hướng dẫn chi tiết này, các bạn học sinh sẽ hiểu rõ hơn về cách giải bài 3 trang 9 sách bài tập Toán 11 - Cánh Diều và có thể áp dụng kiến thức này để giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 11