Logo Header
  1. Môn Toán
  2. Giải bài 20 trang 104 sách bài tập toán 11 - Cánh diều

Giải bài 20 trang 104 sách bài tập toán 11 - Cánh diều

Giải bài 20 trang 104 sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 20 trang 104 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.

Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\). Khẳng định nào sau đây là SAI?

Đề bài

Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\). Khẳng định nào sau đây là SAI?

A. Nếu có mặt phẳng \(\left( Q \right)\) chứa đường thẳng \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) thì \(b\) song song với \(a\).

B. Trong mặt phẳng \(\left( P \right)\) có vô số đường thẳng chéo nhau với \(a\).

C. Đường thẳng \(a\) không có điểm chung với mặt phẳng \(\left( P \right)\).

D. Trong mặt phẳng \(\left( P \right)\) có duy nhất một đường thẳng song song với \(a\).

Phương pháp giải - Xem chi tiếtGiải bài 20 trang 104 sách bài tập toán 11 - Cánh diều 1

Sử dụng các tính chất của đường thẳng song song với mặt phẳng để kiểm tra các đáp án.

Lời giải chi tiết

Đáp án A đúng vì theo tính chất của đường thẳng song song với mặt phẳng: Với đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\), và mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) thì \(a\) song song với \(b\).

Đáp án B đúng, giả sử trên \(\left( P \right)\) ta lấy đường thẳng \(b\) sao cho \(a\) song song với \(b\), và một đường thẳng \(c \subset P\) bất kì sao cho \(b\) cắt \(c\), thì khi đó \(a\) và \(c\) là hai đường thẳng chéo nhau.

Đáp án C đúng, vì theo định nghĩa, đường thẳng song song với mặt phẳng khi chúng không có điểm chung.

Đáp án D sai, giả sử trên \(\left( P \right)\) ta lấy đường thẳng \(b\) sao cho \(a\) song song với \(b\), và một đường thẳng \(c \subset P\) bất kì sao cho \(b\) song song với \(c\), thì ta suy ra \(a\) cũng song song với \(c\).

Đáp án cần chọn là đáp án D.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 20 trang 104 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng toán học. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 20 trang 104 sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 20 trang 104 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.

Nội dung bài tập

Bài 20 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính góc giữa hai vectơ. Bài tập yêu cầu tính góc giữa hai vectơ cho trước, sử dụng công thức liên hệ giữa tích vô hướng và góc giữa hai vectơ: a.b = |a||b|cos(θ)
  • Dạng 2: Xác định mối quan hệ giữa các vectơ. Bài tập yêu cầu xác định xem hai vectơ vuông góc, song song hay đồng phẳng dựa vào tích vô hướng của chúng.
  • Dạng 3: Ứng dụng vào hình học không gian. Bài tập yêu cầu tính độ dài cạnh, chiều cao, hoặc góc trong các hình đa diện, sử dụng các tính chất của tích vô hướng.

Lời giải chi tiết bài 20 trang 104

Để giải bài 20 trang 104 sách bài tập Toán 11 - Cánh Diều, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa tích vô hướng của hai vectơ:a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ a và b.
  2. Các tính chất của tích vô hướng:
    • a.b = b.a
    • a.(b+c) = a.b + a.c
    • k(a.b) = (ka).b = a.(kb)
  3. Điều kiện vuông góc của hai vectơ: Hai vectơ a và b vuông góc khi và chỉ khi a.b = 0

Dưới đây là ví dụ minh họa cách giải một bài tập thuộc dạng 1:

Ví dụ: Cho hai vectơ a = (1; 2; -1)b = (2; -1; 3). Tính góc giữa hai vectơ a và b.

Lời giải:

  1. Tính tích vô hướng của a và b: a.b = 1*2 + 2*(-1) + (-1)*3 = 2 - 2 - 3 = -3
  2. Tính độ dài của a và b: |a| = √(1² + 2² + (-1)²) = √6|b| = √(2² + (-1)² + 3²) = √14
  3. Áp dụng công thức tính góc: cos(θ) = (a.b) / (|a||b|) = -3 / (√6 * √14) = -3 / √84 = -3 / (2√21)
  4. Suy ra: θ = arccos(-3 / (2√21)) ≈ 106.6°

Mẹo giải nhanh

Để giải nhanh các bài tập về tích vô hướng, bạn nên:

  • Nắm vững các công thức và tính chất của tích vô hướng.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều hoặc trên các trang web học toán online khác.

Kết luận

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 20 trang 104 sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11