Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11 sách bài tập Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 10 trang 11, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải bài tập Toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho \(\tan x = - 2\). Tính giá trị của mỗi biểu thức sau:
Đề bài
Cho \(\tan x = - 2\). Tính giá trị của mỗi biểu thức sau:
a) \(A = \frac{{3\sin x - 5\cos x}}{{4\sin x + \cos x}}\)
b) \(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\)
Phương pháp giải - Xem chi tiết
Do \(\tan x\) xác định nên \(\cos x \ne 0\).
Chia cả tử và mẫu của \(A\) cho \(\cos x\), của \(B\) cho \({\cos ^2}x\).
Sử dụng công thức \(\tan x = \frac{{\sin x}}{{\cos x}}\).
Lời giải chi tiết
Do \(\tan x\) xác định nên \(\cos x \ne 0\).
a) Chia cả tử và mẫu của \(A\) cho \(\cos x \ne 0\), ta có:
\(A = \frac{{3\frac{{\sin x}}{{\cos x}} - 5\frac{{\cos x}}{{\cos x}}}}{{4\frac{{\sin x}}{{\cos x}} + \frac{{\cos x}}{{\cos x}}}} = \frac{{3\tan x - 5}}{{4\tan x + 1}} = \frac{{3\left( { - 2} \right) - 5}}{{4\left( { - 2} \right) + 1}} = \frac{{11}}{7}\)
b) Chia cả tử và mẫu của \(B\) cho \({\cos ^2}x \ne 0\), ta có:
\(B = \frac{{2\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 3\frac{{\sin x\cos x}}{{{{\cos }^2}x}} - \frac{{{{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \frac{{\sin x\cos x}}{{{{\cos }^2}x}}}} = \frac{{2{{\left( {\frac{{\sin x}}{{\cos x}}} \right)}^2} - 3\frac{{\sin x}}{{\cos x}} - 1}}{{{{\left( {\frac{{\sin x}}{{\cos x}}} \right)}^2} + \frac{{\sin x}}{{\cos x}}}}\)
\( = \frac{{2{{\tan }^2}x - 3\tan x - 1}}{{{{\tan }^2}x + \tan x}} = \frac{{2{{\left( { - 2} \right)}^2} - 3\left( { - 2} \right) - 1}}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right)}} = \frac{{13}}{2}\)
Bài 10 trang 11 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số.
Bài 10 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ cùng giải một bài tập cụ thể. Giả sử bài tập yêu cầu xác định tập xác định của hàm số y = √(2 - sinx).
Lời giải:
Hàm số y = √(2 - sinx) xác định khi và chỉ khi 2 - sinx ≥ 0. Vì -1 ≤ sinx ≤ 1, nên 2 - sinx ≥ 2 - 1 = 1 > 0 với mọi x. Do đó, tập xác định của hàm số là D = ℝ (tập hợp tất cả các số thực).
Kiến thức về hàm số lượng giác có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như vật lý, kỹ thuật điện, xử lý tín hiệu, và đồ họa máy tính. Việc nắm vững kiến thức này sẽ giúp bạn có lợi thế trong học tập và công việc.
Giaitoan.edu.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập Toán 11. Chúng tôi luôn cập nhật nội dung mới nhất và đa dạng các dạng bài tập để đáp ứng nhu cầu học tập của bạn. Hãy truy cập giaitoan.edu.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Công thức | Mô tả |
---|---|
sin²x + cos²x = 1 | Công thức lượng giác cơ bản |
tanx = sinx / cosx | Định nghĩa hàm tan |
cotx = cosx / sinx | Định nghĩa hàm cot |