Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 68 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của vấn đề.
Phát biểu nào sau đây là SAI?
Đề bài
Phát biểu nào sau đây là SAI?
A. \(\lim \frac{1}{{{2^n}}} = 0\)
B. \(\lim {\left( {\frac{3}{2}} \right)^n} = 0\)
C. \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = 0\)
D. \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\)
Phương pháp giải - Xem chi tiết
Nhận xét rằng nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)
Lời giải chi tiết
Ta có \(\left| {\frac{1}{2}} \right| < 1\) nên \(\lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\).
Ta có \(\left| {\frac{1}{{\sqrt 2 }}} \right| < 1\) nên \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\).
Ta có \(\left| { - \frac{{\sqrt 3 }}{2}} \right| < 1\) nên \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\).
Ta có \(\left| {\frac{3}{2}} \right| > 1\) nên \(\lim {\left( {\frac{3}{2}} \right)^n} = + \infty \).
Đáp án đúng là B.
Bài 1 trang 68 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác.
Bài 1 trang 68 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 68 sách bài tập Toán 11 - Cánh Diều, bạn cần thực hiện theo các bước sau:
Bài tập: Giải phương trình lượng giác: sin(x) = 1/2
Lời giải:
Phương trình sin(x) = 1/2 có các nghiệm là:
Để giải nhanh các bài tập về hàm số lượng giác, bạn có thể sử dụng các mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số lượng giác, bạn có thể luyện tập thêm các bài tập sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 1 trang 68 sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!