Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 21 trang 15 Sách bài tập Toán 11 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Nếu \(\cos a = \frac{{\sqrt 5 }}{3}\) thì giá trị của biểu thức \(A = 4\sin \left( {a + \frac{\pi }{3}} \right)\sin \left( {a - \frac{\pi }{3}} \right)\) bằng:
Đề bài
Nếu \(\cos a = \frac{{\sqrt 5 }}{3}\) thì giá trị của biểu thức \(A = 4\sin \left( {a + \frac{\pi }{3}} \right)\sin \left( {a - \frac{\pi }{3}} \right)\) bằng:
A. \( - \frac{{11}}{9}\)
B. \(\frac{{11}}{9}\)
C. \( - \frac{1}{9}\)
D. \(\frac{1}{9}\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức: \(\sin a.\sin b = \frac{1}{2}\left[ {\cos \left( {a - b} \right) - \cos \left( {a + b} \right)} \right]\)
Lời giải chi tiết
Ta có:
\(\begin{array}{l}A = 4\sin \left( {a + \frac{\pi }{3}} \right)\sin \left( {a - \frac{\pi }{3}} \right) = 4.\frac{1}{2}\left[ {\cos \left( {a + \frac{\pi }{3} - a + \frac{\pi }{3}} \right) - \cos \left( {a + \frac{\pi }{3} + a - \frac{\pi }{3}} \right)} \right]\\ = 2\left( {\cos \frac{{2\pi }}{3} - \cos 2a} \right) = 2\left[ {\cos \frac{{2\pi }}{3} - \left( {2{{\cos }^2}a - 1} \right)} \right] = 2\left( {\frac{{ - 1}}{2} - 2.{{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2} + 1} \right) = - \frac{{11}}{9}\end{array}\)
Đáp án đúng là A.
Bài 21 trang 15 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 21 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để giải quyết bài 21 trang 15 một cách hiệu quả, bạn cần:
Bài toán: Cho hình hộp ABCD.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Chứng minh rằng vectơ MM' vuông góc với mặt phẳng (ABB'A').
Lời giải:
Gọi I là trung điểm của AD. Ta có:
Chứng minh được vectơ MM' vuông góc với vectơ AB và vectơ AA', do đó vectơ MM' vuông góc với mặt phẳng (ABB'A').
Trong bài 21, bạn có thể gặp các dạng bài tập sau:
Để giải nhanh các bài tập về vectơ, bạn có thể sử dụng một số mẹo sau:
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Bài 21 trang 15 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ trong không gian. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên đây, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!