Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 31 trang 55 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 11 nhé!
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?
Đề bài
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?
A. \({u_n} = {5^n}\)
B. \({u_n} = 1 + 5n\)
C. \({u_n} = {5^n} + 1\)
D. \({u_n} = 5 + {n^2}\)
Phương pháp giải - Xem chi tiết
Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân khi thương \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không đổi với mọi \(n \ge 1\) và \({u_n} \ne 0\).
Lời giải chi tiết
Nhận xét rằng trong mỗi dãy số đã cho, tất cả các số hạng đều khác 0.
a) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n}\) là cấp số nhân.
b) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + 5\left( {n + 1} \right)}}{{1 + 5n}} = \frac{{6 + 5n}}{{1 + 5n}}\)
Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + 5n\) không là cấp số nhân.
c) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + {5^{n + 1}}}}{{1 + {5^n}}}\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n} + 1\) không là cấp số nhân.
d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5 + {{\left( {n + 1} \right)}^2}}}{{5 + {n^2}}} = \frac{{{n^2} + 2n + 6}}{{{n^2} + 5}}\)
Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 5 + {n^2}\) không là cấp số nhân.
Bài 31 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học.
Bài 31 bao gồm các dạng bài tập sau:
Để tính tích vô hướng của hai vectơ a và b, ta sử dụng công thức: a ⋅ b = |a| ⋅ |b| ⋅ cos(θ), trong đó θ là góc giữa hai vectơ.
Ví dụ, cho hai vectơ a = (1; 2) và b = (-3; 4). Ta có:
a ⋅ b = (1)(-3) + (2)(4) = -3 + 8 = 5
Để xác định góc giữa hai vectơ, ta sử dụng công thức cos(θ) = (a ⋅ b) / (|a| ⋅ |b|). Sau đó, ta sử dụng máy tính để tính giá trị của θ.
Ví dụ, cho hai vectơ a = (2; -1) và b = (1; 3). Ta có:
a ⋅ b = (2)(1) + (-1)(3) = 2 - 3 = -1
|a| = √(2² + (-1)²) = √5
|b| = √(1² + 3²) = √10
cos(θ) = -1 / (√5 ⋅ √10) = -1 / √50 = -1 / (5√2)
θ ≈ 109.47°
Tích vô hướng có nhiều ứng dụng trong hình học, ví dụ như:
Bài 31 trang 55 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về tích vô hướng của hai vectơ. Hy vọng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán 11.