Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 39 trang 55 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 39 trang 55 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
Đề bài
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_3} = 16\\{u_2} + {u_4} = 40\end{array} \right.\)
b) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_2}.{u_5} = 243\end{array} \right.\)
c) \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 13\\{u_4} + {u_5} + {u_6} = 351\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất của cấp số nhân: Với dãy số \(\left( {{u_n}} \right)\) là cấp số nhân thì \(\frac{{{u_{n + 2}}}}{{{u_{n + 1}}}} = \frac{{{u_{n + 1}}}}{{{u_n}}} = q\) và \({u_n} = {u_1}{q^{n - 1}}\).
Lời giải chi tiết
a) Ta có: \({u_3} = {u_2}q \Rightarrow {u_2} = \frac{{{u_3}}}{q} = \frac{{16}}{q}\), \({u_4} = {u_3}q = 16q\)
Mà \({u_2} + {u_4} = 40\), suy ra \(\frac{{16}}{q} + 16q = 40 \Rightarrow 16 + 16{q^2} = 40q\)
\( \Rightarrow 16{q^2} - 40q + 16 = 0 \Rightarrow 2{q^2} - 5q + 2 = 0 \Rightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)
Trường hợp 1: \(q = \frac{1}{2}\). Ta có \({u_3} = 16 \Rightarrow {u_1}{q^2} = 16 \Rightarrow {u_1}.\frac{1}{4} = 16 \Rightarrow {u_1} = 64\)
Trường hợp 2: \(q = 2\). Tương tự, ta có \({u_1} = 4\).
b) Ta có \({u_2}.{u_5} = {u_1}.q.{u_1}.{q^4} = {u_1}.\left( {{u_1}.{q^5}} \right) = {u_1}.{u_6}\).
Hệ phương trình trở thành \(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_1}.{u_6} = 243\end{array} \right.\)
Theo định lí Viète, \({u_1}\)và \({u_6}\) là nghiệm của phương trình \({X^2} - 244X + 243 = 0\)
Phương trình trên có 2 nghiệm \(X = 1\) và \(X = 243\). Ta có 2 trường hợp:
Trường hợp 1: \({u_1} = 1\) và \({u_6} = 243\). Do \({u_6} = {u_1}{q^5}\), ta suy ra \({q^5} = 243 \Rightarrow q = 3\).
Trường hợp 2: \({u_1} = 243\) và \({u_6} = 1\). Do \({u_6} = {u_1}{q^5}\), ta suy ra \({q^5} = \frac{1}{{243}} \Rightarrow q = \frac{1}{3}\).
c) Ta có
\({u_1} + {u_2} + {u_3} = {u_1} + {u_1}q + {u_1}{q^2} = {u_1}\left( {1 + q + {q^2}} \right)\);
\({u_4} + {u_5} + {u_6} = {u_1}{q^3} + {u_1}{q^4} + {u_1}{q^5} = {u_1}{q^3}\left( {1 + q + {q^2}} \right)\).
Vậy \(\frac{{13}}{{351}} = \frac{{{u_1} + {u_2} + {u_3}}}{{{u_4} + {u_5} + {u_6}}} = \frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}{q^3}\left( {1 + q + {q^2}} \right)}} = \frac{1}{{{q^3}}}\)
Suy ra \({q^3} = \frac{{351}}{{13}} = 27 \Rightarrow q = 3\). Từ đó \({u_1} = \frac{{13}}{{1 + q + {q^2}}} = \frac{{13}}{{1 + 3 + {3^2}}} = 1\).
Bài 39 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 39 trang 55, chúng ta cần phân tích kỹ đề bài và xác định các vectơ liên quan. Dựa vào các kiến thức đã học, ta sẽ áp dụng các phép toán vectơ để tìm ra kết quả cuối cùng.
(Ở đây sẽ là lời giải chi tiết cho từng ý của bài 39, bao gồm các bước giải, hình vẽ minh họa (nếu có), và giải thích rõ ràng từng bước. Ví dụ: Nếu bài toán yêu cầu chứng minh một đẳng thức vectơ, ta sẽ trình bày các bước biến đổi để chứng minh đẳng thức đó.)
Để giúp bạn hiểu rõ hơn về cách giải bài 39, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự:
(Giải chi tiết ví dụ và bài tập tương tự)
Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, bạn nên lưu ý những điều sau:
Bài 39 trang 55 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn đã nắm vững cách giải bài tập này và tự tin hơn trong các bài kiểm tra. Hãy luyện tập thêm nhiều bài tập tương tự để nâng cao kỹ năng giải toán của mình.