Logo Header
  1. Môn Toán
  2. Giải bài 39 trang 55 sách bài tập toán 11 - Cánh diều

Giải bài 39 trang 55 sách bài tập toán 11 - Cánh diều

Giải bài 39 trang 55 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 39 trang 55 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 39 trang 55 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:

Đề bài

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}{u_3} = 16\\{u_2} + {u_4} = 40\end{array} \right.\)

b) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_2}.{u_5} = 243\end{array} \right.\)

c) \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 13\\{u_4} + {u_5} + {u_6} = 351\end{array} \right.\)

Phương pháp giải - Xem chi tiếtGiải bài 39 trang 55 sách bài tập toán 11 - Cánh diều 1

Sử dụng các tính chất của cấp số nhân: Với dãy số \(\left( {{u_n}} \right)\) là cấp số nhân thì \(\frac{{{u_{n + 2}}}}{{{u_{n + 1}}}} = \frac{{{u_{n + 1}}}}{{{u_n}}} = q\) và \({u_n} = {u_1}{q^{n - 1}}\).

Lời giải chi tiết

a) Ta có: \({u_3} = {u_2}q \Rightarrow {u_2} = \frac{{{u_3}}}{q} = \frac{{16}}{q}\), \({u_4} = {u_3}q = 16q\)

Mà \({u_2} + {u_4} = 40\), suy ra \(\frac{{16}}{q} + 16q = 40 \Rightarrow 16 + 16{q^2} = 40q\)

\( \Rightarrow 16{q^2} - 40q + 16 = 0 \Rightarrow 2{q^2} - 5q + 2 = 0 \Rightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)

Trường hợp 1: \(q = \frac{1}{2}\). Ta có \({u_3} = 16 \Rightarrow {u_1}{q^2} = 16 \Rightarrow {u_1}.\frac{1}{4} = 16 \Rightarrow {u_1} = 64\)

Trường hợp 2: \(q = 2\). Tương tự, ta có \({u_1} = 4\).

b) Ta có \({u_2}.{u_5} = {u_1}.q.{u_1}.{q^4} = {u_1}.\left( {{u_1}.{q^5}} \right) = {u_1}.{u_6}\).

Hệ phương trình trở thành \(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_1}.{u_6} = 243\end{array} \right.\)

Theo định lí Viète, \({u_1}\) \({u_6}\) là nghiệm của phương trình \({X^2} - 244X + 243 = 0\)

Phương trình trên có 2 nghiệm \(X = 1\) và \(X = 243\). Ta có 2 trường hợp:

Trường hợp 1: \({u_1} = 1\) và \({u_6} = 243\). Do \({u_6} = {u_1}{q^5}\), ta suy ra \({q^5} = 243 \Rightarrow q = 3\).

Trường hợp 2: \({u_1} = 243\) và \({u_6} = 1\). Do \({u_6} = {u_1}{q^5}\), ta suy ra \({q^5} = \frac{1}{{243}} \Rightarrow q = \frac{1}{3}\).

c) Ta có

\({u_1} + {u_2} + {u_3} = {u_1} + {u_1}q + {u_1}{q^2} = {u_1}\left( {1 + q + {q^2}} \right)\);

\({u_4} + {u_5} + {u_6} = {u_1}{q^3} + {u_1}{q^4} + {u_1}{q^5} = {u_1}{q^3}\left( {1 + q + {q^2}} \right)\).

Vậy \(\frac{{13}}{{351}} = \frac{{{u_1} + {u_2} + {u_3}}}{{{u_4} + {u_5} + {u_6}}} = \frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}{q^3}\left( {1 + q + {q^2}} \right)}} = \frac{1}{{{q^3}}}\)

Suy ra \({q^3} = \frac{{351}}{{13}} = 27 \Rightarrow q = 3\). Từ đó \({u_1} = \frac{{13}}{{1 + q + {q^2}}} = \frac{{13}}{{1 + 3 + {3^2}}} = 1\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 39 trang 55 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 39 trang 55 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết

Bài 39 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Vectơ: Một đoạn thẳng có hướng. Vectơ được xác định bởi điểm gốc và điểm cuối.
  • Phép cộng vectơ: Quy tắc hình bình hành hoặc quy tắc tam giác.
  • Phép trừ vectơ:AB - AC = CB
  • Tích của một số với vectơ:k.AB là một vectơ cùng hướng với AB nếu k > 0 và ngược hướng nếu k < 0. Độ dài của k.AB|k| lần độ dài của AB.

Phần 2: Giải chi tiết bài 39 trang 55 Sách bài tập Toán 11 - Cánh Diều

Để giải bài 39 trang 55, chúng ta cần phân tích kỹ đề bài và xác định các vectơ liên quan. Dựa vào các kiến thức đã học, ta sẽ áp dụng các phép toán vectơ để tìm ra kết quả cuối cùng.

(Ở đây sẽ là lời giải chi tiết cho từng ý của bài 39, bao gồm các bước giải, hình vẽ minh họa (nếu có), và giải thích rõ ràng từng bước. Ví dụ: Nếu bài toán yêu cầu chứng minh một đẳng thức vectơ, ta sẽ trình bày các bước biến đổi để chứng minh đẳng thức đó.)

Phần 3: Ví dụ minh họa và bài tập tương tự

Để giúp bạn hiểu rõ hơn về cách giải bài 39, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự:

  1. Ví dụ 1: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng 2AM = AB + AC.
  2. Bài tập 1: Cho hình bình hành ABCD. Tìm vectơ AD theo các vectơ ABAC.

(Giải chi tiết ví dụ và bài tập tương tự)

Phần 4: Mẹo giải nhanh và lưu ý quan trọng

Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, bạn nên lưu ý những điều sau:

  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Sử dụng quy tắc hình bình hành hoặc quy tắc tam giác để cộng, trừ vectơ.
  • Áp dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ.
  • Kiểm tra lại kết quả sau khi giải xong.

Phần 5: Tổng kết

Bài 39 trang 55 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn đã nắm vững cách giải bài tập này và tự tin hơn trong các bài kiểm tra. Hãy luyện tập thêm nhiều bài tập tương tự để nâng cao kỹ năng giải toán của mình.

Tài liệu, đề thi và đáp án Toán 11