Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 61 trang 31 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Dùng đồ thị hàm số \(y = \sin x\), \(y = \cos x\) để xác định số nghiệm của phương trình:
Đề bài
Dùng đồ thị hàm số \(y = \sin x\), \(y = \cos x\) để xác định số nghiệm của phương trình:
a) \(5\sin x - 3 = 0\) trên đoạn \(\left[ { - \pi ;4\pi } \right]\)
b) \(\sqrt 2 \cos x + 1 = 0\) trên khoảng \(\left( { - 4\pi ;0} \right)\)
Phương pháp giải - Xem chi tiết
a) Biến đổi phương trình thành \(\sin x = \frac{3}{5}\).
Vẽ đồ thị hàm số \(y = \sin x\), đường thẳng \(y = \frac{3}{5}\) và đếm số giao điểm có hoành độ thuộc đoạn \(\left[ { - \pi ;4\pi } \right]\)
b) Biến đổi phương trình thành \(\cos x = \frac{{ - 1}}{{\sqrt 2 }}\).
Vẽ đồ thị hàm số \(y = \cos x\), đường thẳng \(y = \frac{{ - 1}}{{\sqrt 2 }}\) và đếm số giao điểm có hoành độ thuộc khoảng \(\left( { - 4\pi ;0} \right)\)
Lời giải chi tiết
a) Ta có \(5\sin x - 3 = 0 \Leftrightarrow \sin x = \frac{3}{5}\).
Nghiệm của phương trình trên chính là hoành độ các giao điểm của đường thẳng \(y = \frac{3}{5}\) và đồ thị hàm số \(y = \sin x\) như hình vẽ dưới đây.
Dựa vào hình vẽ, ta thấy đường thẳng \(y = \frac{3}{5}\) cắt đồ thị hàm số \(y = \sin x\) tại 4 điểm có hoành độ nằm trên đoạn \(\left[ { - \pi ;4\pi } \right]\). Có nghĩa là, phương trình \(5\sin x - 3 = 0\) có 4 nghiệm trên đoạn \(\left[ { - \pi ;4\pi } \right]\).
b) Ta có \(\sqrt 2 \cos x + 1 = 0 \Leftrightarrow \cos x = \frac{{ - 1}}{{\sqrt 2 }}\)
Nghiệm của phương trình trên chính là hoành độ các giao điểm của đường thẳng \(y = \frac{{ - 1}}{{\sqrt 2 }}\) và đồ thị hàm số \(y = \cos x\) như hình vẽ dưới đây.
Dựa vào hình vẽ, ta thấy đường thẳng \(y = \frac{{ - 1}}{{\sqrt 2 }}\) cắt đồ thị hàm số \(y = \cos x\) tại 4 điểm có hoành độ nằm trên khoảng \(\left( { - 4\pi ;0} \right)\). Có nghĩa là, phương trình \(\sqrt 2 \cos x + 1 = 0\) có 4 nghiệm trên khoảng \(\left( { - 4\pi ;0} \right)\).
Bài 61 trang 31 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và các công thức liên quan để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.
Bài 61 thường bao gồm các dạng bài tập sau:
Để giải bài tập 61 trang 31 sách bài tập Toán 11 - Cánh Diều hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài tập: Chứng minh rằng sin2x + cos2x = 1
Lời giải:
Ta có: sin2x + cos2x = (sin x)2 + (cos x)2
Theo định nghĩa sin và cos trong tam giác vuông, ta có: sin x = đối/cạnh huyền và cos x = kề/cạnh huyền
Áp dụng định lý Pitago trong tam giác vuông, ta có: đối2 + kề2 = cạnh huyền2
Suy ra: (sin x)2 + (cos x)2 = (đối/cạnh huyền)2 + (kề/cạnh huyền)2 = đối2/cạnh huyền2 + kề2/cạnh huyền2 = (đối2 + kề2)/cạnh huyền2 = cạnh huyền2/cạnh huyền2 = 1
Vậy, sin2x + cos2x = 1 (đpcm)
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số lượng giác, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi Toán 11 để được hướng dẫn chi tiết và giải đáp thắc mắc.
Bài 61 trang 31 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán lượng giác. Bằng cách nắm vững kiến thức nền tảng, áp dụng các phương pháp giải phù hợp và luyện tập thường xuyên, bạn có thể giải quyết thành công bài tập này và đạt kết quả tốt trong môn Toán.