Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 42 trang 79 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho hàm số \(f\left( x \right) = \cot ax.\) Khi đó, \(f'\left( x \right)\) bằng:
Đề bài
Cho hàm số \(f\left( x \right) = \cot ax.\) Khi đó, \(f'\left( x \right)\) bằng:
A. \( - \frac{a}{{{{\sin }^2}ax}}.\)
B. \(\frac{a}{{{{\sin }^2}ax}}.\)
C. \(\frac{1}{{{{\sin }^2}ax}}.\)
D. \( - \frac{1}{{{{\sin }^2}ax}}.\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức \({\left( {\cot u} \right)^\prime } = - \frac{{u'}}{{{{\sin }^2}u}}.\)
Lời giải chi tiết
\(f\left( x \right) = \cot ax \Rightarrow f'\left( x \right) = {\left( {\cot ax} \right)^\prime } = - \frac{a}{{{{\sin }^2}ax}}.\)
Đáp án A.
Bài 42 trang 79 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường tập trung vào việc xác định vị trí tương đối giữa đường thẳng và mặt phẳng, tính góc giữa đường thẳng và mặt phẳng, và giải các bài toán ứng dụng liên quan.
Bài 42 thường bao gồm các dạng bài tập sau:
Để giải bài tập 42 trang 79 sách bài tập Toán 11 - Cánh Diều hiệu quả, bạn cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết cho bài 42, chúng ta cần biết nội dung cụ thể của bài tập. Tuy nhiên, dưới đây là một ví dụ về cách giải một bài tập tương tự:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Khi giải bài tập về đường thẳng và mặt phẳng trong không gian, bạn cần chú ý những điều sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều hoặc các nguồn tài liệu khác.
Bài 42 trang 79 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu sâu hơn về vị trí tương đối giữa đường thẳng và mặt phẳng trong không gian. Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự.
Khái niệm | Định nghĩa |
---|---|
Đường thẳng song song với mặt phẳng | Đường thẳng và mặt phẳng không có điểm chung. |
Đường thẳng vuông góc với mặt phẳng | Đường thẳng tạo với mặt phẳng một góc vuông. |
Góc giữa đường thẳng và mặt phẳng | Góc tạo bởi đường thẳng và hình chiếu của nó trên mặt phẳng. |