Logo Header
  1. Môn Toán
  2. Giải bài 61 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 61 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 61 trang 50 Sách bài tập Toán 11 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 61 trang 50 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và những lưu ý quan trọng để bạn nắm vững kiến thức Toán 11.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu, logic, giúp bạn tự tin hơn trong quá trình học tập và làm bài tập.

Giải mỗi phương trình sau:

Đề bài

Giải mỗi phương trình sau:

a) \({3^{x - 1}} = 5;\)

b) \({3^{{x^2} - 4x + 5}} = 9;\)

c) \({2^{2x + 3}} = 8\sqrt 2 ;\)

d) \({8^{x - 2}} = {4^{1 - 2x}};\)

e) \({2^{{x^2} - 3x - 2}} = 0,{25.16^{x - 3}};\)

g) \({2^{{x^2} - 4x + 4}} = 3.\)

Phương pháp giải - Xem chi tiếtGiải bài 61 trang 50 sách bài tập toán 11 - Cánh diều 1

Đưa 2 vế về cùng cơ số hoặc sử dụng với \(a > 0,{\rm{ }}a \ne 1\) thì \({\log _a}x = b \Leftrightarrow x = {a^b}.\)

Lời giải chi tiết

a) \({3^{x - 1}} = 5 \Leftrightarrow x - 1 = {\log _3}5 \Leftrightarrow x = 1 + {\log _3}5.\)

b) \({3^{{x^2} - 4x + 5}} = 9 \Leftrightarrow {3^{{x^2} - 4x + 5}} = {3^2} \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).

c) \({2^{2x + 3}} = 8\sqrt 2 \Leftrightarrow {2^{2x + 3}} = {2^3}{.2^{\frac{1}{2}}} \Leftrightarrow {2^{2x + 3}} = {2^{\frac{7}{2}}} \Leftrightarrow 2x + 3 = \frac{7}{2} \Leftrightarrow x = \frac{1}{4}.\)

d) \({8^{x - 2}} = {4^{1 - 2x}} \Leftrightarrow {2^{3\left( {x - 2} \right)}} = {2^{2\left( {1 - 2x} \right)}} \Leftrightarrow 3x - 6 = 2 - 4x \Leftrightarrow 7x = 8 \Leftrightarrow x = \frac{8}{7}.\)

e) Ta có:

\(\begin{array}{l}{2^{{x^2} - 3x - 2}} = 0,{25.16^{x - 3}} \Leftrightarrow {2^{{x^2} - 3x - 2}} = {2^{ - 2}}{.2^{4\left( {x - 3} \right)}} \Leftrightarrow {2^{{x^2} - 3x - 2}} = {2^{4x - 14}} \Leftrightarrow {x^2} - 3x - 2 = 4x - 14\\ \Leftrightarrow {x^2} - 7x + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 4\end{array} \right..\end{array}\) g) \({2^{{x^2} - 4x + 4}} = 3 \Leftrightarrow {x^2} - 4x + 4 = {\log _2}3 \Leftrightarrow {\left( {x - 2} \right)^2} = {\log _2}3 \Leftrightarrow \left[ \begin{array}{l}x = 2 + {\log _2}3\\x = 2 - {\log _2}3\end{array} \right.\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 61 trang 50 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 61 trang 50 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 61 trang 50 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 61 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc và tính chất của vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Tìm vectơ: Yêu cầu học sinh tìm một vectơ thỏa mãn các điều kiện cho trước, ví dụ như tìm vectơ tổng, vectơ hiệu, hoặc vectơ tích.
  • Ứng dụng vectơ vào hình học: Yêu cầu học sinh sử dụng vectơ để giải quyết các bài toán liên quan đến hình học, ví dụ như chứng minh ba điểm thẳng hàng, chứng minh hai đường thẳng song song, hoặc tính diện tích hình bình hành.

Lời giải chi tiết bài 61 trang 50

Để giải bài 61 trang 50 Sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán để giúp bạn hình dung rõ hơn về các yếu tố liên quan.
  3. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các vectơ và các điểm trong không gian.
  4. Biểu diễn các vectơ bằng tọa độ: Sử dụng tọa độ của các điểm để biểu diễn các vectơ liên quan.
  5. Thực hiện các phép toán vectơ: Sử dụng các quy tắc và tính chất của vectơ để thực hiện các phép toán cần thiết, ví dụ như phép cộng, phép trừ, tích của một số với vectơ.
  6. Kiểm tra kết quả: Kiểm tra lại kết quả của bạn để đảm bảo tính chính xác.

Ví dụ minh họa:

Giả sử bài 61 yêu cầu chứng minh rằng với ba điểm A, B, C bất kỳ, ta có: overrightarrow{AB} + vecoring{BC} = vecoring{AC}.

Lời giải:

Theo quy tắc cộng vectơ, ta có: overrightarrow{AB} + vecoring{BC} = vecoring{AC}. Vậy đẳng thức được chứng minh.

Mẹo giải bài tập vectơ

  • Nắm vững các định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài toán liên quan đến vectơ.
  • Sử dụng quy tắc cộng, trừ vectơ một cách linh hoạt: Quy tắc cộng, trừ vectơ là công cụ quan trọng để giải quyết các bài toán chứng minh đẳng thức vectơ và tìm vectơ.
  • Vẽ hình minh họa: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra phương pháp giải phù hợp.
  • Luyện tập thường xuyên: Luyện tập thường xuyên giúp bạn nắm vững kiến thức và kỹ năng giải bài tập vectơ.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Bài 61 trang 50 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ trong không gian. Hy vọng với lời giải chi tiết và những mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và làm bài tập Toán 11.

Tài liệu, đề thi và đáp án Toán 11