Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 94 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học tập tốt hơn và đạt kết quả cao trong môn Toán.
Cho tứ diện \(ABCD\). Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AB,{\rm{ }}CD\).
Đề bài
Cho tứ diện \(ABCD\). Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AB,{\rm{ }}CD\). Chứng minh rằng bốn điểm \(M,{\rm{ }}N,{\rm{ }}C,{\rm{ }}D\) không cùng nằm trong một mặt phẳng.
Phương pháp giải - Xem chi tiết
Giả sử 4 điểm \(M\), \(N\), \(C\), \(D\) cùng nằm trong một mặt phẳng.
Từ đó chứng minh rằng \(M \in \left( {BCD} \right)\), suy ra \(A \in \left( {BCD} \right)\) và suy ra điều vô lí.
Lời giải chi tiết
Do \(N\) là trung điểm của \(BC\), nên 4 điểm \(B\), \(N\), \(C\), \(D\) cùng nằm trong mặt phẳng.
Giả sử 4 điểm \(M\), \(N\), \(C\), \(D\) cùng nằm trong một mặt phẳng.
Điều này có nghĩa là \(M \in \left( {NCD} \right)\).
Do bốn điểm \(B\), \(N\), \(C\), \(D\) cùng nằm trong mặt phẳng, ta suy ra \(M \in \left( {BCD} \right)\).
Điểm \(M\) và điểm \(B\) cùng nằm trong mặt phẳng \(\left( {BCD} \right)\), nên \(BM \subset \left( {BCD} \right)\).
Mặt khác, do \(M\) là trung điểm của \(AB\), nên \(A \in BM\).
Suy ra \(A \in \left( {BCD} \right)\). Điều này là vô lí do \(ABCD\) là tứ diện nên bốn điểm \(A\), \(B\), \(C\), \(D\) không cùng nằm trong một mặt phẳng.
Bài 4 trang 94 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về đồ thị hàm số lượng giác, đặc biệt là hàm cosin, để giải quyết các bài toán liên quan đến việc xác định các điểm thuộc đồ thị, tìm tập giá trị, và khảo sát sự biến thiên của hàm số.
Bài 4 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 4 trang 94 sách bài tập Toán 11 - Cánh Diều, học sinh cần nắm vững các kiến thức sau:
Câu a: Xác định các điểm thuộc đồ thị hàm số y = cos(x) khi x = 0, x = π/2, x = π, x = 3π/2.
Lời giải:
Câu b: Tìm tập giá trị của hàm số y = cos(x) trên khoảng [-π/2, π/2].
Lời giải:
Trên khoảng [-π/2, π/2], hàm số cos(x) là hàm chẵn và đồng biến. Do đó, tập giá trị của hàm số là [0, 1].
Câu c: Khảo sát sự biến thiên của hàm số y = cos(x) trên khoảng [0, π].
Lời giải:
Trên khoảng [0, π], hàm số cos(x) nghịch biến. Hàm số đạt giá trị lớn nhất tại x = 0 (y = 1) và giá trị nhỏ nhất tại x = π (y = -1). Không có cực đại, cực tiểu trên khoảng này.
Để củng cố kiến thức về hàm số lượng giác, bạn có thể làm thêm các bài tập sau:
Bài 4 trang 94 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số lượng giác và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.