Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 51 trang 29 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 51 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Giá trị của \(m\) để phương trình \(\cos x = m\) có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là:
Đề bài
Giá trị của \(m\) để phương trình \(\cos x = m\) có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là:
A. \(0 \le m < 1\)
B. \(0 \le m \le 1\)
C. \(0 < m \le 1\)
D. \(0 < m < 1\)
Phương pháp giải - Xem chi tiết
Sử dụng đồ thị hàm số \(y = \cos x\) để xác định giá trị của hàm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Lời giải chi tiết
Đồ thị hàm số \(y = \cos x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) được vẽ như hình dưới đây.
Nhìn vào đồ thị, ta thấy trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\), ta thấy \(0 < \cos x \le 1\).
Như vậy, để phương trình \(\cos x = m\) có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thì \(0 < m \le 1\)
Đáp án đúng là C.
Bài 51 trang 29 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Bài 51 thường yêu cầu học sinh chứng minh một đẳng thức vectơ hoặc tìm một vectơ thỏa mãn một điều kiện nào đó. Để giải quyết bài toán này, chúng ta có thể sử dụng các phương pháp sau:
(Ở đây sẽ là lời giải chi tiết cho bài 51, bao gồm các bước giải, giải thích rõ ràng và các ví dụ minh họa. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.)
Giả sử bài 51 yêu cầu chứng minh đẳng thức vectơ AB + CD = AD + CB. Chúng ta có thể giải quyết bài toán này như sau:
Áp dụng quy tắc hình bình hành, ta có:
AB + AD = AC và CB + CD = DB
Nếu AC = DB thì AB + AD = CB + CD. Từ đó suy ra AB + CD = AD + CB.
Để củng cố kiến thức và kỹ năng giải toán, bạn có thể thực hiện các bài tập sau:
Bài 51 trang 29 Sách bài tập Toán 11 - Cánh Diều là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng giải toán vectơ trong không gian. Bằng cách nắm vững các khái niệm cơ bản, phương pháp giải và luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong các kỳ thi.