Logo Header
  1. Môn Toán
  2. Giải bài 47 trang 46 sách bài tập toán 11 - Cánh diều

Giải bài 47 trang 46 sách bài tập toán 11 - Cánh diều

Giải bài 47 trang 46 sách bài tập Toán 11 Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 11 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 47 trang 46 một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và tiện lợi nhất cho học sinh. Hãy cùng bắt đầu với bài giải chi tiết ngay sau đây!

Tìm tập xác định của các hàm số:

Đề bài

Tìm tập xác định của các hàm số:

a) \(y = {\left( {\frac{1}{2}} \right)^{2x - 5}};\)

b) \(y = {3^{\frac{{x - 1}}{{x + 1}}}};\)

c) \(y = 1,{5^{\sqrt {x + 2} }};\)

d) \(y = {\log _5}\left( {1 - 5x} \right);\)

e) \(y = {\rm{log}}\left( {4{x^2} - 9} \right);\)

g) \(y = \ln \left( {{x^2} - 4x + 4} \right).\)

Phương pháp giải - Xem chi tiếtGiải bài 47 trang 46 sách bài tập toán 11 - Cánh diều 1

- Tập xác định của hàm số mũ \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là \(\mathbb{R}.\)

- Tập xác định của hàm số lôgarit \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) là \(\left( {0; + \infty } \right).\)

Lời giải chi tiết

a) Hàm số \(y = {\left( {\frac{1}{2}} \right)^{2x - 5}}\) có tập xác định là \(\mathbb{R}.\)

b) Hàm số \(y = {3^{\frac{{x - 1}}{{x + 1}}}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}.\)

c) Hàm số \(y = 1,{5^{\sqrt {x + 2} }}\) xác định khi: \(x + 2 \ge 0 \Leftrightarrow x \ge - 2.\) Vậy tập xác định của hàm số là \(\left[ { - 2; + \infty } \right).\)

d) Hàm số \(y = {\log _5}\left( {1 - 5x} \right)\) xác định khi: \(1 - 5x > 0 \Leftrightarrow x < \frac{1}{5}.\) Vậy tập xác định của hàm số là \(\left( { - \infty ;\frac{1}{5}} \right).\)

e) Hàm số \(y = {\rm{log}}\left( {4{x^2} - 9} \right)\) xác định khi: \(4{x^2} - 9 > 0 \Leftrightarrow {x^2} > \frac{9}{4} \Leftrightarrow \left[ \begin{array}{l}x > \frac{3}{2}.\\x < - \frac{3}{2}.\end{array} \right.\)

Vậy tập xác định của hàm số là \(\left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {\frac{3}{2}; + \infty } \right).\)

g) Hàm số \(y = \ln \left( {{x^2} - 4x + 4} \right)\) xác định khi: \({x^2} - 4x + 4 > 0 \Leftrightarrow {\left( {x - 2} \right)^2} > 0\)

\( \Leftrightarrow x \ne 2.\) Vậy tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 47 trang 46 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán học. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 47 trang 46 sách bài tập Toán 11 Cánh Diều

Bài 47 trang 46 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm lượng giác cơ bản như sin, cosin, tang, cotang để giải quyết các bài toán thực tế.

Nội dung bài tập

Bài 47 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác.
  • Tìm tập giá trị của hàm số lượng giác.
  • Khảo sát sự biến thiên của hàm số lượng giác.
  • Giải phương trình lượng giác.
  • Ứng dụng hàm số lượng giác vào các bài toán thực tế.

Lời giải chi tiết bài 47 trang 46

Để giải bài 47 trang 46 sách bài tập Toán 11 Cánh Diều, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Đọc kỹ đề bài và xác định yêu cầu của bài toán.
  2. Bước 2: Xác định các hàm số lượng giác cần sử dụng.
  3. Bước 3: Áp dụng các công thức và tính chất của hàm số lượng giác để giải bài toán.
  4. Bước 4: Kiểm tra lại kết quả và đảm bảo tính chính xác.

Ví dụ: Giả sử bài tập yêu cầu tìm tập xác định của hàm số y = tan(x). Để giải bài này, chúng ta cần nhớ rằng hàm số tan(x) không xác định khi cos(x) = 0. Do đó, tập xác định của hàm số y = tan(x) là tập hợp tất cả các số thực x sao cho x ≠ π/2 + kπ, với k là số nguyên.

Các lưu ý khi giải bài tập hàm số lượng giác

Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:

  • Nắm vững các định nghĩa và tính chất của các hàm lượng giác cơ bản.
  • Sử dụng thành thạo các công thức lượng giác.
  • Chú ý đến điều kiện xác định của hàm số lượng giác.
  • Rèn luyện kỹ năng giải phương trình lượng giác.
  • Áp dụng kiến thức vào các bài toán thực tế để hiểu rõ hơn về ứng dụng của hàm số lượng giác.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11.
  • Sách bài tập Toán 11.
  • Các trang web học Toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng Toán 11 trên YouTube.

Kết luận

Bài 47 trang 46 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Hàm sốTập xác địnhTập giá trị
y = sin(x)R[-1, 1]
y = cos(x)R[-1, 1]
y = tan(x)x ≠ π/2 + kπ, k ∈ ZR

Tài liệu, đề thi và đáp án Toán 11