Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 45 trang 83 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}{\rm{ }}\left( {x \ne 2} \right)\\a{\rm{ }}\left( {x = 2} \right)\end{array} \right.\).
Đề bài
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}{\rm{ }}\left( {x \ne 2} \right)\\a{\rm{ }}\left( {x = 2} \right)\end{array} \right.\).
Tìm \(a\) để hàm số liên tục trên \(\mathbb{R}\).
Phương pháp giải - Xem chi tiết
Nhận xét rằng hàm số liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\). Do đó để hàm số liên tục trên \(\mathbb{R}\) thì hàm số liên tục tại \(x = 2\).
Lời giải chi tiết
Với \(x \ne 2\), ta có \(f\left( x \right) = \frac{{{x^2} - 4}}{{x - 2}}\) là hàm phân thức nên nó liên tục trên từng khoảng xác định, tức \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\).
Do đó để hàm số liên tục trên \(\mathbb{R}\) thì hàm số liên tục tại \(x = 2\). Điều này tương đương với \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\), và \(f\left( 2 \right) = a\).
Suy ra \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right) \Leftrightarrow a = 4\).
Bài 45 trang 83 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.
Bài tập 45 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi xem lời giải, bạn nên tự mình cố gắng giải bài tập trước để rèn luyện kỹ năng và tư duy.
Giả sử đề bài yêu cầu tìm ảnh của điểm A(1;2) qua phép tịnh tiến theo vectơ v = (3; -1). Lời giải:
Gọi A'(x'; y') là ảnh của A qua phép tịnh tiến theo vectơ v. Khi đó:
x' = 1 + 3 = 4
y' = 2 - 1 = 1
Vậy A'(4; 1).
Giả sử đề bài yêu cầu tìm tâm của phép quay biến điểm A(0;0) thành điểm A'(1;1). Lời giải:
Gọi O(x; y) là tâm của phép quay. Khi đó:
OA = OA' và góc AOA' bằng 90 độ.
Từ đó, ta có thể giải hệ phương trình để tìm ra tọa độ của điểm O.
Phép biến hình không chỉ là một phần quan trọng của chương trình Toán học mà còn có nhiều ứng dụng trong thực tế, chẳng hạn như:
Hy vọng rằng, với lời giải chi tiết và những hướng dẫn trên, bạn đã có thể tự tin giải bài tập 45 trang 83 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!