Logo Header
  1. Môn Toán
  2. Giải bài 45 trang 83 sách bài tập toán 11 - Cánh diều

Giải bài 45 trang 83 sách bài tập toán 11 - Cánh diều

Giải bài 45 trang 83 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 45 trang 83 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}{\rm{ }}\left( {x \ne 2} \right)\\a{\rm{ }}\left( {x = 2} \right)\end{array} \right.\).

Đề bài

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}{\rm{ }}\left( {x \ne 2} \right)\\a{\rm{ }}\left( {x = 2} \right)\end{array} \right.\).

Tìm \(a\) để hàm số liên tục trên \(\mathbb{R}\).

Phương pháp giải - Xem chi tiếtGiải bài 45 trang 83 sách bài tập toán 11 - Cánh diều 1

Nhận xét rằng hàm số liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\). Do đó để hàm số liên tục trên \(\mathbb{R}\) thì hàm số liên tục tại \(x = 2\).

Lời giải chi tiết

Với \(x \ne 2\), ta có \(f\left( x \right) = \frac{{{x^2} - 4}}{{x - 2}}\) là hàm phân thức nên nó liên tục trên từng khoảng xác định, tức \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\).

Do đó để hàm số liên tục trên \(\mathbb{R}\) thì hàm số liên tục tại \(x = 2\). Điều này tương đương với \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\), và \(f\left( 2 \right) = a\).

Suy ra \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right) \Leftrightarrow a = 4\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 45 trang 83 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 45 trang 83 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết

Bài 45 trang 83 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.

Nội dung bài tập 45 trang 83 Sách bài tập Toán 11 - Cánh Diều

Bài tập 45 thường bao gồm các dạng bài sau:

  1. Xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép biến hình: Yêu cầu học sinh xác định vị trí mới của các đối tượng hình học sau khi thực hiện một phép biến hình cụ thể.
  2. Tìm tâm của phép biến hình: Đòi hỏi học sinh phải xác định tâm của phép tịnh tiến, phép quay, hoặc phép đối xứng.
  3. Chứng minh một hình là ảnh của một hình khác qua phép biến hình: Học sinh cần chứng minh rằng một hình được tạo ra từ một hình khác thông qua một phép biến hình nhất định.
  4. Vận dụng phép biến hình để giải quyết các bài toán hình học: Sử dụng các phép biến hình để đơn giản hóa bài toán hoặc tìm ra lời giải.

Lời giải chi tiết bài 45 trang 83 Sách bài tập Toán 11 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi xem lời giải, bạn nên tự mình cố gắng giải bài tập trước để rèn luyện kỹ năng và tư duy.

Câu a: (Ví dụ minh họa)

Giả sử đề bài yêu cầu tìm ảnh của điểm A(1;2) qua phép tịnh tiến theo vectơ v = (3; -1). Lời giải:

Gọi A'(x'; y') là ảnh của A qua phép tịnh tiến theo vectơ v. Khi đó:

x' = 1 + 3 = 4

y' = 2 - 1 = 1

Vậy A'(4; 1).

Câu b: (Ví dụ minh họa)

Giả sử đề bài yêu cầu tìm tâm của phép quay biến điểm A(0;0) thành điểm A'(1;1). Lời giải:

Gọi O(x; y) là tâm của phép quay. Khi đó:

OA = OA' và góc AOA' bằng 90 độ.

Từ đó, ta có thể giải hệ phương trình để tìm ra tọa độ của điểm O.

Mẹo giải bài tập phép biến hình hiệu quả

  • Nắm vững định nghĩa và tính chất của các phép biến hình: Đây là nền tảng để giải quyết mọi bài toán liên quan đến phép biến hình.
  • Vẽ hình minh họa: Việc vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng công thức một cách chính xác: Đảm bảo rằng bạn áp dụng đúng công thức cho từng phép biến hình.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của phép biến hình trong thực tế

Phép biến hình không chỉ là một phần quan trọng của chương trình Toán học mà còn có nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Thiết kế đồ họa: Phép biến hình được sử dụng để tạo ra các hiệu ứng hình ảnh đẹp mắt và độc đáo.
  • Robot học: Phép biến hình được sử dụng để điều khiển và lập trình robot.
  • Xây dựng và kiến trúc: Phép biến hình được sử dụng để thiết kế các công trình và kiến trúc phức tạp.

Hy vọng rằng, với lời giải chi tiết và những hướng dẫn trên, bạn đã có thể tự tin giải bài tập 45 trang 83 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11