Logo Header
  1. Môn Toán
  2. Giải bài 21 trang 76 sách bài tập toán 11 - Cánh diều

Giải bài 21 trang 76 sách bài tập toán 11 - Cánh diều

Giải bài 21 trang 76 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 21 trang 76 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tính các giới hạn sau:

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 5x + 2}}{{3x + 1}}\)

b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 3}}{{3{x^2} + 2x + 5}}\)

c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}}\)

d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}}\)

e) \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 8x + 6}}{{{x^2} - 1}}\)

g) \(\mathop {\lim }\limits_{x \to - 3} \frac{{ - {x^2} + 2x + 15}}{{{x^2} + 4x + 3}}\)

Phương pháp giải - Xem chi tiếtGiải bài 21 trang 76 sách bài tập toán 11 - Cánh diều 1

Sử dụng các định lí về giới hạn hàm số.

Lời giải chi tiết

a) Ta có:\(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 5x + 2}}{{3x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( { - 5 + \frac{2}{x}} \right)}}{{x\left( {3 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 5 + \frac{2}{x}}}{{3 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to - \infty } \left( { - 5} \right) + \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to - \infty } 3 + \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}}}\)

\( = \frac{{ - 5 + 0}}{{3 + 0}} = \frac{{ - 5}}{3}\)

b) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 3}}{{3{x^2} + 2x + 5}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2}\left( {\frac{{ - 2}}{x} + \frac{3}{{{x^2}}}} \right)}}{{{x^2}\left( {3 + \frac{2}{x} + \frac{5}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{ - 2}}{x} + \frac{3}{{{x^2}}}}}{{3 + \frac{2}{x} + \frac{5}{{{x^2}}}}}\)

\( = \frac{{\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2}}{x} + \mathop {\lim }\limits_{x \to - \infty } \frac{3}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to - \infty } 3 + \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x} + \mathop {\lim }\limits_{x \to - \infty } \frac{5}{{{x^2}}}}} = \frac{{0 + 0}}{{3 + 0 + 0}} = 0\).

c) Ta có:

\(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2}\left( {9 + \frac{3}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {9 + \frac{3}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9 + \frac{3}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right)}}\)

Do \(\mathop {\lim }\limits_{x \to + \infty } \left( {9 + \frac{3}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to + \infty } 9 + \mathop {\lim }\limits_{x \to + \infty } \frac{3}{{{x^2}}} = 9 + 0 = 9\), nên \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {9 + \frac{3}{{{x^2}}}} = \sqrt 9 = 3\).

Mặt khác, \(\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 1 + 0 = 1\).

Suy ra \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right)}} = \frac{3}{1} = 3\).

d) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2}\left( {9 + \frac{3}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( { - x} \right)\sqrt {9 + \frac{3}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}}\)

\( = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{{\sqrt {9 + \frac{3}{{{x^2}}}} }}{{1 + \frac{1}{x}}}} \right) = - \frac{{\mathop {\lim }\limits_{x \to - \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{1}{x}} \right)}}\)

Do \(\mathop {\lim }\limits_{x \to - \infty } \left( {9 + \frac{3}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to - \infty } 9 + \mathop {\lim }\limits_{x \to - \infty } \frac{3}{{{x^2}}} = 9 + 0 = 9\), nên \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {9 + \frac{3}{{{x^2}}}} = \sqrt 9 = 3\).

Mặt khác, \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to - \infty } 1 + \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x} = 1 + 0 = 1\).

Suy ra \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = - \frac{{\mathop {\lim }\limits_{x \to - \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{1}{x}} \right)}} = - \frac{3}{1} = - 3\).

e) Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 8x + 6}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {2x - 6} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{2x - 6}}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to 1} 2x - \mathop {\lim }\limits_{x \to 1} 6}}{{\mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1}}\)

\( = \frac{{2.1 - 6}}{{1 + 1}} = - 2\).

f) Ta có: \(\mathop {\lim }\limits_{x \to - 3} \frac{{ - {x^2} + 2x + 15}}{{{x^2} + 4x + 3}} = \mathop {\lim }\limits_{x \to - 3} \frac{{\left( {x + 3} \right)\left( {5 - x} \right)}}{{\left( {x + 3} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to - 3} \frac{{5 - x}}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to - 3} 5 - \mathop {\lim }\limits_{x \to - 3} x}}{{\mathop {\lim }\limits_{x \to - 3} x + \mathop {\lim }\limits_{x \to - 3} 1}}\)

\( = \frac{{5 - \left( { - 3} \right)}}{{\left( { - 3} \right) + 1}} = - 4\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 21 trang 76 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 21 trang 76 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết

Bài 21 trang 76 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.

Nội dung bài tập 21 trang 76 Sách bài tập Toán 11 - Cánh Diều

Bài tập 21 thường bao gồm các dạng bài sau:

  1. Xác định ảnh của một điểm hoặc một hình qua phép biến hình: Yêu cầu học sinh xác định vị trí mới của một điểm hoặc một hình sau khi thực hiện một phép tịnh tiến, phép quay, phép đối xứng trục hoặc phép đối xứng tâm.
  2. Tìm tâm của phép biến hình: Đòi hỏi học sinh phải xác định tâm của phép tịnh tiến, phép quay, phép đối xứng trục hoặc phép đối xứng tâm dựa trên thông tin cho trước.
  3. Chứng minh một hình là ảnh của một hình khác qua phép biến hình: Yêu cầu học sinh chứng minh rằng một hình là ảnh của một hình khác qua một phép biến hình cụ thể.
  4. Vận dụng phép biến hình để giải quyết các bài toán hình học: Sử dụng các phép biến hình để chứng minh tính chất của các hình, tìm các điểm đặc biệt của hình, hoặc giải các bài toán liên quan đến diện tích và chu vi.

Hướng dẫn giải chi tiết bài 21 trang 76 Sách bài tập Toán 11 - Cánh Diều

Để giải quyết bài tập 21 trang 76 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Phép tịnh tiến: Hiểu rõ định nghĩa, tính chất và cách xác định ảnh của một điểm hoặc một hình qua phép tịnh tiến.
  • Phép quay: Nắm vững định nghĩa, tính chất và cách xác định ảnh của một điểm hoặc một hình qua phép quay.
  • Phép đối xứng trục: Hiểu rõ định nghĩa, tính chất và cách xác định ảnh của một điểm hoặc một hình qua phép đối xứng trục.
  • Phép đối xứng tâm: Nắm vững định nghĩa, tính chất và cách xác định ảnh của một điểm hoặc một hình qua phép đối xứng tâm.

Dưới đây là một ví dụ minh họa cách giải một bài tập trong bài 21 trang 76:

Bài tập: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm ảnh A' của điểm A qua phép tịnh tiến đó.

Giải:

Áp dụng công thức phép tịnh tiến: A'(x' ; y') = A(x; y) + v(a; b) = (x + a; y + b)

Thay các giá trị vào, ta có: A'(1 + 3; 2 - 1) = A'(4; 1)

Vậy, ảnh A' của điểm A qua phép tịnh tiến theo vectơ v = (3; -1) là A'(4; 1).

Mẹo giải bài tập phép biến hình hiệu quả

  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng công thức: Nắm vững các công thức liên quan đến phép biến hình và áp dụng chúng một cách chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên: Luyện tập thường xuyên giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:

  • Các trang web học toán online: giaitoan.edu.vn, loigiaihay.com, vted.vn,...
  • Các video bài giảng trên YouTube: Tìm kiếm các video bài giảng về phép biến hình để hiểu rõ hơn về lý thuyết và phương pháp giải bài tập.
  • Các diễn đàn học tập: Tham gia các diễn đàn học tập để trao đổi kiến thức và kinh nghiệm với các bạn học sinh khác.

Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài tập 21 trang 76 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11