Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 31 trang 100 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Cho hình chóp \(S.ABCD\). Gọi \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\)
Đề bài
Cho hình chóp \(S.ABCD\). Gọi \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\), \({\alpha _4}\) lần lượt là góc giữa các đường thẳng \(SA\), \(SB\), \(SC\), \(SD\) và mặt phẳng \(\left( {ABCD} \right)\). Chứng minh rằng \(SA = SB = SC = SD \Leftrightarrow {\alpha _1} = {\alpha _2} = {\alpha _3} = {\alpha _4}\).
Phương pháp giải - Xem chi tiết
Gọi \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\). Chỉ ra rằng \({\alpha _1} = \widehat {SAH}\), \({\alpha _2} = \widehat {SBH}\), \({\alpha _3} = \widehat {SCH}\), \({\alpha _4} = \widehat {SDH}\), rồi suy ra điều phải chứng minh.
Lời giải chi tiết
Gọi \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\).
Dễ thấy rằng \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\), \({\alpha _4}\) là những góc tạo bởi đường thẳng và mặt phẳng, nên chúng không lớn hơn \({90^o}\).
Vì \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\), ta suy ra \({\alpha _1} = \widehat {SAH}\).
Tam giác \(SAH\) vuông tại \(H\), ta có \(\sin {\alpha _1} = \sin \widehat {SAH} = \frac{{SH}}{{SA}}\).
Chứng minh tương tự, ta cũng có:
+ \({\alpha _2} = \widehat {SBH}\), \(\sin {\alpha _2} = \sin \widehat {SBH} = \frac{{SH}}{{SB}}\),
+ \({\alpha _3} = \widehat {SCH}\), \(\sin {\alpha _3} = \sin \widehat {SCH} = \frac{{SH}}{{SC}}\),
+ \({\alpha _4} = \widehat {SDH}\), \(\sin {\alpha _4} = \sin \widehat {SDH} = \frac{{SH}}{{SD}}\),
Vậy, \(SA = SB = SC = SD \Leftrightarrow \frac{{SH}}{{SA}} = \frac{{SH}}{{SB}} = \frac{{SH}}{{SC}} = \frac{{SH}}{{SD}}\)
\( \Leftrightarrow \sin {\alpha _1} = \sin {\alpha _2} = \sin {\alpha _3} = \sin {\alpha _4} \Leftrightarrow {\alpha _1} = {\alpha _2} = {\alpha _3} = {\alpha _4}\).
Bài toán được chứng minh.
Bài 31 trang 100 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài 31 thường bao gồm các dạng bài tập sau:
a.b = |a||b|cos(θ)
Để giải bài 31 trang 100 sách bài tập Toán 11 - Cánh Diều, bạn cần nắm vững các kiến thức sau:
a.b = |a||b|cos(θ)
, trong đó θ là góc giữa hai vectơ a và b.a.b = b.a
, a.(b+c) = a.b + a.c
, k(a.b) = (ka).b = a.(kb)
a ⊥ b ⇔ a.b = 0
Dưới đây là ví dụ minh họa cách giải một bài tập thuộc dạng 1:
Ví dụ: Cho hai vectơ a = (1; 2; -1)
và b = (2; -1; 3)
. Tính góc giữa hai vectơ a và b.
Lời giải:
a.b = 1*2 + 2*(-1) + (-1)*3 = 2 - 2 - 3 = -3
|a| = √(1² + 2² + (-1)²) = √6
|b| = √(2² + (-1)² + 3²) = √14
cos(θ) = (a.b) / (|a||b|) = -3 / (√6 * √14) = -3 / √84 = -3 / (2√21)
θ = arccos(-3 / (2√21)) ≈ 106.6°
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự sau:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 31 trang 100 sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!