Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 45 trang 23 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Từ đồ thị hàm số \(y = \cos x\), cho biết:
Đề bài
Từ đồ thị hàm số \(y = \cos x\), cho biết:
a) Có bao nhiêu giá trị của \(x\) trên đoạn \(\left[ { - 5\pi ;0} \right]\) để \(\cos x = 1\)?
b) Có bao nhiêu giá trị của \(x\) trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\) để \(\cos x = 0\)?
Phương pháp giải - Xem chi tiết
Vẽ đồ thị hàm số \(y = \cos x\)
a) Vẽ đường thẳng \(y = 1\) và đếm số giao điểm của đường thẳng này với đồ thị hàm số \(y = \cos x\).
b) Vẽ đường thẳng \(y = 0\) và đếm số giao điểm của đường thẳng này với đồ thị hàm số \(y = \cos x\).
Lời giải chi tiết
a) Ta có hình vẽ sau:
Dựa vào hình vẽ, ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = \cos x\) tại 3 điểm có hoành độ nằm trên đoạn \(\left[ { - 5\pi ;0} \right]\), nghĩa là có 3 giá trị của \(x\) trên đoạn \(\left[ { - 5\pi ;0} \right]\) để \(\cos x = 1\).
b) Ta có hình vẽ sau:
Từ hình vẽ trên, ta thấy đường thẳng \(y = 0\) (trục \(Ox\)) cắt đồ thị hàm số \(y = \cos x\) tại 3 điểm có hoành độ nằm trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\), nghĩa là có 2 giá trị của \(x\) trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\) để \(\cos x = 0\). (Lưu ý rằng chúng ta không lấy những giá trị \(x = - \frac{{9\pi }}{2}\) và \(x = - \frac{{3\pi }}{2}\))
Bài 45 trang 23 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học không gian.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 45 trang 23, chúng ta cần phân tích kỹ đề bài, xác định các vectơ liên quan, và áp dụng các công thức, tính chất đã học. Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi trong bài tập:
Giả sử đề bài yêu cầu tính vectơ AB + CD, với A, B, C, D là các điểm trong không gian. Chúng ta sẽ sử dụng quy tắc hình bình hành để tìm vectơ tổng. Đầu tiên, vẽ hình bình hành ABCD. Sau đó, vectơ AB + CD sẽ là vectơ đường chéo AC của hình bình hành đó.
Giả sử đề bài yêu cầu chứng minh ba vectơ a, b, c đồng phẳng. Chúng ta có thể sử dụng điều kiện cần và đủ để ba vectơ đồng phẳng là tồn tại các số thực x, y, z không đồng thời bằng không sao cho c = x*a + y*b.
Giả sử đề bài yêu cầu tìm tọa độ của vectơ a biết tọa độ của các điểm A và B. Chúng ta sẽ sử dụng công thức: a = (xB - xA, yB - yA, zB - zA).
Để nắm vững kiến thức và kỹ năng giải bài tập về vectơ trong không gian, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tham khảo các bài giảng trực tuyến hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.
Kiến thức về vectơ trong không gian có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học và vật lý, như hình học giải tích, cơ học, và vật lý học. Việc hiểu rõ về vectơ sẽ giúp bạn giải quyết các bài toán phức tạp một cách dễ dàng và hiệu quả hơn.
Công thức | Mô tả |
---|---|
a + b = b + a | Tính giao hoán của phép cộng vectơ |
(a + b) + c = a + (b + c) | Tính kết hợp của phép cộng vectơ |
k(a + b) = ka + kb | Tính chất phân phối của phép nhân đối với phép cộng vectơ |
Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về bài 45 trang 23 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!