Logo Header
  1. Môn Toán
  2. Giải bài 55 trang 57 sách bài tập toán 11 - Cánh diều

Giải bài 55 trang 57 sách bài tập toán 11 - Cánh diều

Giải bài 55 trang 57 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 55 trang 57 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho dãy số \(\left( {{u_n}} \right)\) có tổng \(n\) số hạng đầu là\({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\)

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) có tổng \(n\) số hạng đầu là\({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\) với \(n \in {\mathbb{N}^*}\).

a) Tính \({u_1}\), \({u_2}\) và \({u_3}\).

b) Tìm công thức của số hạng tổng quát \({u_n}\).

c) Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng.

Phương pháp giải - Xem chi tiếtGiải bài 55 trang 57 sách bài tập toán 11 - Cánh diều 1

a) Ta có \({S_n}\) là tổng \(n\) số hạng đầu tiên của dãy.

Với \(n = 1\) ta có \({S_1} = {u_1}\)

Với \(n = 2\) ta có \({S_2} = {u_1} + {u_2}\)

Với \(n = 3\) ta có \({S_3} = {u_1} + {u_2} + {u_3}\)

Giải hệ phương trình, ta tính được \({u_1}\), \({u_2}\) và \({u_3}\).

b) Sử dụng công thức \({u_n} = {S_n} - {S_{n - 1}}\)

c) Để chứng minh \(\left( {{u_n}} \right)\) là cấp số cộng, từ kết quả câu b, ta cần chứng minh \({u_n} - {u_{n - 1}}\) là hằng số.

Lời giải chi tiết

a, Ta có

\({S_1} = {u_1} \Rightarrow {u_1} = \frac{{1\left( { - 1 - 5.1} \right)}}{2} = - 3\)

\({S_2} = {u_1} + {u_2} = {S_1} + {u_2} \Rightarrow {u_2} = {S_2} - {S_1} = \frac{{2\left( { - 1 - 5.2} \right)}}{2} - \frac{{1\left( { - 1 - 5.1} \right)}}{2} = - 8\)

\({S_3} = {u_1} + {u_2} + {u_3} = {S_2} + {u_3} \Rightarrow {u_3} = {S_3} - {S_2} = \frac{{3\left( { - 1 - 5.3} \right)}}{3} - \frac{{2\left( { - 1 - 5.2} \right)}}{2} = - 13\)

Vậy ba số hạng đầu của dãy số là \( - 3\), \( - 8\), \( - 13\).

b) Ta có

\({S_n} = {u_1} + {u_2} + ... + {u_{n - 1}} + {u_n}\), \({S_{n - 1}} = {u_1} + {u_2} + ... + {u_{n - 1}}\)

\( \Rightarrow {u_n} = {S_n} - {S_{n - 1}} = \frac{{n\left( { - 1 - 5n} \right)}}{2} - \frac{{\left( {n - 1} \right)\left[ { - 1 - 5\left( {n - 1} \right)} \right]}}{2} = \frac{{n - 5{n^2}}}{2} - \frac{{\left( {n - 1} \right)\left( {4 - 5n} \right)}}{2}\)

\( = \frac{{n - 5{n^2} - \left( { - 4 + 5{n^2} + 9n} \right)}}{2} = \frac{{4 - 10n}}{2} = 2 - 5n\)

c) Xét \({u_n} - {u_{n - 1}} = \left( {2 - 5n} \right) - \left[ {2 - 5\left( {n - 1} \right)} \right] = \left( {2 - 5n} \right) - \left( {2 - 5n + 5} \right) = 5\).

Do \({u_n} - {u_{n - 1}} = 5\) là hằng số, dãy số \(\left( {{u_n}} \right)\) là cấp số cộng.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 55 trang 57 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng môn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 55 trang 57 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 55 trang 57 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, tích vô hướng, và các tính chất liên quan để giải quyết các bài toán hình học không gian.

Nội dung bài tập

Bài 55 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu chứng minh một đẳng thức vectơ nào đó bằng cách sử dụng các quy tắc và tính chất của phép toán vectơ.
  • Tìm vectơ: Yêu cầu tìm một vectơ thỏa mãn các điều kiện cho trước, ví dụ như tìm vectơ cùng phương, cùng chiều, hoặc có độ dài nhất định.
  • Tính góc giữa hai vectơ: Yêu cầu tính góc giữa hai vectơ bằng cách sử dụng công thức tích vô hướng.
  • Ứng dụng vào hình học không gian: Giải các bài toán liên quan đến tính khoảng cách, góc, và các yếu tố hình học khác trong không gian.

Phương pháp giải bài tập

Để giải bài tập vectơ hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Các định nghĩa và tính chất của vectơ: Hiểu rõ định nghĩa vectơ, các phép toán vectơ (cộng, trừ, nhân với một số), và các tính chất của chúng.
  2. Tích vô hướng của hai vectơ: Nắm vững công thức tính tích vô hướng, các tính chất của tích vô hướng, và ứng dụng của tích vô hướng trong việc tính góc giữa hai vectơ.
  3. Hệ tọa độ trong không gian: Biết cách biểu diễn vectơ trong hệ tọa độ, và sử dụng các công thức liên quan đến tọa độ vectơ để giải bài tập.

Ví dụ minh họa

Bài toán: Cho hai vectơ a = (1; 2; 3)b = (-2; 1; 0). Tính tích vô hướng của ab.

Giải: Tích vô hướng của ab được tính như sau:

a ⋅ b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0

Vậy, tích vô hướng của ab bằng 0.

Lưu ý khi giải bài tập

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng các công thức và tính chất một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về vectơ, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học toán online uy tín

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 55 trang 57 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11