Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 28 trang 100 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông, \(AC\) cắt \(BD\) tại \(O\)
Đề bài
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông, \(AC\) cắt \(BD\) tại \(O\), \(SO \bot \left( {ABCD} \right)\). Tất cả các cạnh của hình chóp bằng \(a\).
a) Tính góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SAC} \right)\).
b) Gọi \(\alpha \) là số đo của góc nhị diện \(\left[ {S,CD,A} \right]\). Tính \(\cos \alpha \).
c) Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\), \(\beta \) là số đo của góc nhị diện \(\left[ {A,d,D} \right]\). Tính \(\cos \beta \).
d*) Gọi \(\gamma \) là số đo góc nhị diện \(\left[ {B,SC,D} \right]\). Tính \(\cos \gamma \).
Phương pháp giải - Xem chi tiết
a) Xác định hình chiếu của \(B\) trên mặt phẳng \(\left( {SAC} \right)\), từ đó tính được góc giữa \(SB\) và \(\left( {SAC} \right)\).
b) Gọi \(N\) là trung điểm của \(CD\). Chứng minh góc phẳng nhị diện của góc nhị diện \(\left[ {S,CD,A} \right]\) là góc \(\widehat {SNO}\). Tính \(\cos \widehat {SNO}\).
c) Chứng minh rằng \(d\) song song với \(AB\) và \(CD\). Gọi \(M\) là trung điểm của \(AB\). Chứng minh rằng góc phẳng nhị diện của góc nhị diện \(\left[ {A,d,D} \right]\) là góc \(\widehat {MSN}\), từ đó tính \(\cos \widehat {MSN}\).
d) Gọi \(E\) là hình chiếu của \(B\) trên \(SC\). Chứng minh góc phẳng nhị diện của góc nhị diện \(\left[ {B,SC,D} \right]\) là góc \(\widehat {BED}\). Tính \(\cos \widehat {BED}\).
Lời giải chi tiết
a) Do \(SO \bot \left( {ABCD} \right)\), ta có \(SO \bot OB\). Vì \(ABCD\) là hình vuông nên \(BO \bot AC\). Như vậy \(BO \bot \left( {SAC} \right)\), tức là hình chiếu của điểm \(B\) trên \(\left( {SAC} \right)\). Do đó góc giữa \(SB\) và \(\left( {SAC} \right)\) là góc \(\widehat {BSO}\).
Ta có \(ABCD\) là hình vuông cạnh \(a\), nên \(BD = a\sqrt 2 \).
Tam giác \(SBD\) có \(SB = SD = a\) và \(S{B^2} + S{D^2} = {a^2} + {a^2} = 2{a^2} = B{D^2}\), nên tam giác này là tam giác vuông cân tại \(S\).
Hơn nữa, do \(SO \bot BD\), ta suy ra \(\widehat {BSO} = \widehat {SBO} = {45^o}\).
Như vậy, góc giữa \(SB\) và \(\left( {SAC} \right)\) bằng \({45^o}\).
b) Gọi \(N\) là trung điểm của \(CD\). Do tam giác \(SCD\) đều (\(SC = SD = CD = a\)), ta suy ra \(SN \bot CD\) và \(SN = \sqrt {S{C^2} - C{N^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).
Do \(O\) là tâm của hình vuông \(ABCD\), ta suy ra \(ON \bot CD\). Như vậy, góc phẳng nhị diện của góc nhị diện \(\left[ {S,CD,O} \right]\) là góc \(\widehat {SNO}\). Hơn nữa do \(O \in \left( {ABCD} \right)\), ta suy ra góc nhị diện \(\left[ {S,CD,O} \right]\) cũng chính là góc nhị diện \(\left[ {S,CD,A} \right]\), tức là \(\alpha = \widehat {SNO}\).
Như vậy \(\cos \alpha = \cos \widehat {SNO} = \frac{{ON}}{{SN}} = \frac{{\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{3}\).
c) Ta thấy rằng \(AB\parallel CD\), \(AB \subset \left( {SAB} \right)\), \(CD \subset \left( {SCD} \right)\), \(S \in \left( {SAB} \right) \cap \left( {SCD} \right)\), nên giao tuyến \(d\) của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) đi qua \(S\) và song song với \(AB\) và \(CD\).
Gọi \(M\) là trung điểm của \(AB\). Tam giác \(SAB\) đều (\(SA = AB = SB = a\)) nên \(SM \bot AB\). Mặt khác, do \(d\parallel AB\) nên \(SM \bot d\). Chứng minh tương tự ta cũng có \(SN \bot d\). Suy ra góc phẳng nhị diện của góc nhị diện \(\left[ {M,d,N} \right]\) là góc \(\widehat {MSN}\).
Hơn nữa, do \(AM\parallel d\) và \(DN\parallel d\), ta suy ra góc nhị diện \(\left[ {M,d,N} \right]\) cũng chính là \(\left[ {A,d,D} \right]\), tức là \(\beta = \widehat {MSN}\).
Ta có \(SM = SN = \frac{{a\sqrt 3 }}{2}\), \(MN = a\). Theo định lí cos trong tam giác, ta có:
\(\cos \beta = \cos \widehat {MSN} = \frac{{S{M^2} + S{N^2} - M{N^2}}}{{2SM.SN}} = \frac{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} - {a^2}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\).
d) Gọi \(E\) là hình chiếu của \(B\) trên \(SC\). Theo câu a, ta có \(BD \bot \left( {SAC} \right)\) nên suy ra \(BD \bot SC\). Mà \(BE \bot SC\) nên suy ra \(SC \bot \left( {BDE} \right)\), điều này dẫn tới \(SC \bot DE\).
Như vậy, vì \(BE \bot SC\), \(SC \bot DE\) nên góc phẳng nhị diện của góc nhị diện \(\left[ {B,SC,D} \right]\) là góc \(\widehat {BED}\), tức là \(\gamma = \widehat {BED}\).
Tam giác \(SBC\) đều (\(SB = SC = BC = a\)) và có \(BE \bot SC\), nên ta dễ dàng tính được \(BE = \frac{{a\sqrt 3 }}{2}\). Tương tự, ta cũng có \(DE = \frac{{a\sqrt 3 }}{2}\).
Theo định lí cos trong tam giác, ta có:
\(\cos \gamma = \cos \widehat {BED} = \frac{{B{E^2} + D{E^2} - B{D^2}}}{{2BE.DE}} = \frac{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{{a\sqrt 3 }}{2}}} = \frac{{ - 1}}{3}\).
Bài 28 trang 100 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài tập 28 thường bao gồm các dạng bài sau:
a.b = |a||b|cos(θ)
Để giải bài 28 trang 100 sách bài tập Toán 11 - Cánh Diều, bạn cần nắm vững các kiến thức sau:
a.b = |a||b|cos(θ)
, trong đó θ là góc giữa hai vectơ a và b.a.b = b.a
, (ka).b = k(a.b)
, a.(b+c) = a.b + a.c
a ⊥ b ⇔ a.b = 0
Dưới đây là ví dụ minh họa cách giải một bài tập thuộc dạng 1:
Cho hai vectơ a = (1; 2; -1)
và b = (2; -1; 3)
. Tính góc giữa hai vectơ a và b.
Lời giải:
Ta có: a.b = 1*2 + 2*(-1) + (-1)*3 = 2 - 2 - 3 = -3
|a| = √(1² + 2² + (-1)²) = √6
|b| = √(2² + (-1)² + 3²) = √14
Áp dụng công thức tính góc giữa hai vectơ: cos(θ) = (a.b) / (|a||b|) = -3 / (√6 * √14) = -3 / √84 = -3 / (2√21)
Suy ra: θ = arccos(-3 / (2√21)) ≈ 106.6°
Để giải nhanh các bài tập về tích vô hướng, bạn nên:
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều hoặc trên các trang web học toán online khác.
Bài 28 trang 100 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu sâu hơn về tích vô hướng của hai vectơ và các ứng dụng của nó trong hình học không gian. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.
Dạng bài | Công thức/Lưu ý |
---|---|
Tính góc | cos(θ) = (a.b) / (|a||b|) |
Kiểm tra vuông góc | a.b = 0 |
Ứng dụng hình học | Sử dụng định lý Pitago, hệ thức lượng trong tam giác, tứ diện |