Logo Header
  1. Môn Toán
  2. Giải bài 43 trang 23 sách bài tập toán 11 - Cánh diều

Giải bài 43 trang 23 sách bài tập toán 11 - Cánh diều

Giải bài 43 trang 23 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 43 trang 23 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

a) \(y = 3\sin x + 5\)

b) \(y = \sqrt {1 + \cos 2x} + 3\)

c) \(y = 4 - 2\sin x\cos x\)

d) \(y = \frac{1}{{4 - \sin x}}\)

Phương pháp giải - Xem chi tiếtGiải bài 43 trang 23 sách bài tập toán 11 - Cánh diều 1

Sử dụng tính chất \( - 1 \le \sin x \le 1\), \( - 1 \le \cos x \le 1\) với \(\forall x \in \mathbb{R}\).

Lời giải chi tiết

a) Tập xác định của hàm số là \(\mathbb{R}\).

Do \( - 1 \le \sin x \le 1 \Rightarrow - 3 \le 3\sin x \le 3 \Rightarrow 2 \le 3\sin x + 5 \le 8\).

Vậy, giá trị lớn nhất của hàm số bằng 8 khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \)\(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng 2 khi \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \)\(\left( {k \in \mathbb{Z}} \right)\).

b) Hàm số xác định khi \(1 + \cos 2x \ge 0 \Leftrightarrow \cos 2x \ge - 1\) (luôn đúng với \(\forall x \in \mathbb{R}\))

Do đó, tập xác định của hàm số là \(\mathbb{R}\).

Vì \( - 1 \le \cos 2x \le 1 \Rightarrow 0 \le 1 + \cos 2x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos 2x} \le \sqrt 2 \)

\( \Rightarrow 3 \le \sqrt {1 + \cos 2x} + 3 \le 3 + \sqrt 2 \).

Vậy, giá trị lớn nhất của hàm số bằng \(3 + \sqrt 2 \) khi \(\cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \) \(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số là 3 khi \(\cos 2x = - 1 \Leftrightarrow 2x = \pi + k2\pi \Leftrightarrow x = \frac{\pi }{2} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

c) Tập xác định của hàm số là \(\mathbb{R}\).

Do \(\sin 2x = 2\sin x\cos x\), nên \(y = 4 - 2\sin x\cos x = 4 - \sin 2x\).

Vì \( - 1 \le \sin 2x \le 1 \Rightarrow 1 \ge - \sin 2x \ge - 1 \Rightarrow 5 \ge 4 - \sin 2x \ge 3\), nên giá trị lớn nhất của hàm số bằng 5 khi \(\sin 2x = - 1 \Leftrightarrow 2x = - \frac{\pi }{2} + k2\pi \Leftrightarrow x = - \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng 3 khi \(\sin 2x = 1 \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

d) Hàm số xác định khi \(4 - \sin x \ne 0 \Leftrightarrow \sin x \ne 4\) (luôn đúng do \(\sin x \le 1 < 4\) với \(\forall x \in \mathbb{R}\)). Do đó, tập xác định của hàm số là \(\mathbb{R}\).

Ta có \( - 1 \le \sin x \le 1 \Rightarrow 1 \ge - \sin x \ge - 1 \Rightarrow 5 \ge 4 - \sin x \ge 3 \Rightarrow \frac{1}{5} \le \frac{1}{{4 - \sin x}} \le \frac{1}{3}\).

Vậy giá trị lớn nhất của hàm số bằng \(\frac{1}{3}\) khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng \(\frac{1}{5}\) khi \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 43 trang 23 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 43 trang 23 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 43 trang 23 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 43 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức lượng giác: Yêu cầu học sinh sử dụng các công thức lượng giác cơ bản và các phép biến đổi tương đương để chứng minh một đẳng thức cho trước.
  • Rút gọn biểu thức lượng giác: Yêu cầu học sinh sử dụng các công thức lượng giác để rút gọn một biểu thức lượng giác phức tạp về dạng đơn giản nhất.
  • Giải phương trình lượng giác: Yêu cầu học sinh tìm các giá trị của biến số thỏa mãn một phương trình lượng giác cho trước.
  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác: Yêu cầu học sinh sử dụng các phương pháp toán học để tìm ra giá trị lớn nhất và giá trị nhỏ nhất của một hàm số lượng giác trong một khoảng xác định.

Lời giải chi tiết bài 43 trang 23

Để giúp bạn hiểu rõ hơn về cách giải bài 43 trang 23, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo. Bạn nên tự mình suy nghĩ và giải bài tập trước khi tham khảo lời giải để rèn luyện kỹ năng giải toán.

Câu a: (Ví dụ về một câu hỏi trong bài 43)

Đề bài: Chứng minh rằng sin2x + cos2x = 1

Lời giải:

Ta có: sin2x + cos2x = (sin x)2 + (cos x)2. Theo định lý Pytago trong tam giác vuông, ta có: (sin x)2 + (cos x)2 = 1. Vậy, sin2x + cos2x = 1 (đpcm).

Câu b: (Ví dụ về một câu hỏi trong bài 43)

Đề bài: Rút gọn biểu thức: A = sin x + cos x

Lời giải:

Biểu thức A = sin x + cos x không thể rút gọn thêm được nữa. Đây là dạng biểu thức cơ bản trong lượng giác.

Mẹo giải bài tập hàm số lượng giác

Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:

  • Nắm vững các công thức lượng giác cơ bản: Các công thức lượng giác là công cụ quan trọng để giải quyết các bài toán về hàm số lượng giác.
  • Sử dụng các phép biến đổi tương đương: Các phép biến đổi tương đương giúp bạn đơn giản hóa các biểu thức lượng giác phức tạp.
  • Vận dụng các phương pháp toán học: Các phương pháp toán học như phương pháp đặt ẩn phụ, phương pháp đánh giá,... có thể giúp bạn giải quyết các bài toán khó.
  • Luyện tập thường xuyên: Luyện tập thường xuyên giúp bạn rèn luyện kỹ năng giải toán và nắm vững kiến thức.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã trình bày, bạn sẽ tự tin hơn khi giải bài 43 trang 23 sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11