Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 45 sách bài tập toán 11 - Cánh diều

Giải bài 1 trang 45 sách bài tập toán 11 - Cánh diều

Giải bài 1 trang 45 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 1 trang 45, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải bài tập Toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho dãy số (left( {{u_n}} right)) biết ({u_1} = 2) và ({u_n} = frac{{{u_{n - 1}} + 1}}{2}) với mọi (n ge 2). Ba số hạng đầu tiên của dãy số lần lượt là:

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \frac{{{u_{n - 1}} + 1}}{2}\) với mọi \(n \ge 2\). Ba số hạng đầu tiên của dãy số lần lượt là:

A. \(2;{\rm{ 1; }}\frac{3}{2}\)

B. \(2;{\rm{ }}\frac{3}{2}{\rm{; }}\frac{5}{2}\)

C. \(2;{\rm{ }}\frac{3}{2}{\rm{; }}\frac{5}{4}\)

D. \(2;{\rm{ }}\frac{3}{2};{\rm{ 2}}\)

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 45 sách bài tập toán 11 - Cánh diều 1

Thay \(n = 2\), \(n = 3\) vào công thức \({u_n} = \frac{{{u_{n - 1}} + 1}}{2}\) để tìm \({u_2}\), \({u_3}\).

Lời giải chi tiết

Ta có \({u_2} = \frac{{{u_1} + 1}}{2} = \frac{{2 + 1}}{2} = \frac{3}{2}\); \({u_3} = \frac{{{u_2} + 1}}{2} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4}\).

Vậy ba số hạng đầu tiên của dãy số là \(2;{\rm{ }}\frac{3}{2};{\rm{ }}\frac{5}{4}\)

Đáp án đúng là C.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 45 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 45 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 1 trang 45 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài tập

Bài 1 trang 45 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số: Học sinh cần xác định các giá trị của x sao cho hàm số có nghĩa. Điều này đòi hỏi việc hiểu rõ các điều kiện về mẫu số khác 0, căn bậc chẵn không âm, và logarit có cơ số lớn hơn 0 và khác 1.
  • Tìm tập giá trị của hàm số: Học sinh cần tìm khoảng giá trị mà hàm số có thể đạt được. Điều này thường liên quan đến việc tìm giá trị lớn nhất và nhỏ nhất của hàm số, hoặc sử dụng các phương pháp biến đổi hàm số.
  • Vẽ đồ thị hàm số: Học sinh cần vẽ đồ thị của hàm số dựa trên các điểm đặc biệt, như giao điểm với các trục tọa độ, điểm cực trị, và tiệm cận.
  • Giải phương trình lượng giác: Học sinh cần giải các phương trình lượng giác cơ bản, sử dụng các công thức biến đổi lượng giác và các phương pháp giải phương trình thông thường.

Lời giải chi tiết bài 1 trang 45

Để giúp bạn hiểu rõ hơn về cách giải bài 1 trang 45, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, đây chỉ là một ví dụ, và bạn có thể áp dụng các phương pháp tương tự để giải các bài tập khác.

Câu a: (Ví dụ minh họa)

Cho hàm số y = sin(2x). Hãy xác định tập xác định của hàm số.

Lời giải:

Hàm số y = sin(2x) là hàm số lượng giác, và hàm sin(x) xác định với mọi giá trị của x. Do đó, hàm số y = sin(2x) cũng xác định với mọi giá trị của x. Vậy, tập xác định của hàm số là D = R.

Câu b: (Ví dụ minh họa)

Cho hàm số y = 1 / (cos(x) - 1). Hãy xác định tập xác định của hàm số.

Lời giải:

Hàm số y = 1 / (cos(x) - 1) xác định khi và chỉ khi mẫu số khác 0. Tức là, cos(x) - 1 ≠ 0, hay cos(x) ≠ 1. Điều này xảy ra khi x ≠ k2π, với k là số nguyên. Vậy, tập xác định của hàm số là D = R \ {k2π, k ∈ Z}.

Mẹo giải bài tập hàm số lượng giác

Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng các mẹo sau:

  • Nắm vững các công thức lượng giác cơ bản: Các công thức cộng, trừ, nhân, chia, hạ bậc, nâng bậc lượng giác là công cụ quan trọng để biến đổi và giải các bài toán.
  • Sử dụng các phương pháp đồ thị: Vẽ đồ thị hàm số giúp bạn hình dung được tính chất của hàm số và tìm ra lời giải một cách trực quan.
  • Biến đổi phương trình lượng giác về dạng cơ bản: Sử dụng các công thức lượng giác để biến đổi phương trình về dạng sin(x) = a, cos(x) = a, tan(x) = a, hoặc cot(x) = a, sau đó giải phương trình một cách dễ dàng.
  • Kiểm tra lại kết quả: Sau khi giải bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về hàm số lượng giác, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học Toán online uy tín
  • Các video bài giảng về hàm số lượng giác

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải bài 1 trang 45 sách bài tập Toán 11 Cánh Diều và các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11