Logo Header
  1. Môn Toán
  2. Giải bài 62 trang 118, 119 sách bài tập toán 11 - Cánh diều

Giải bài 62 trang 118, 119 sách bài tập toán 11 - Cánh diều

Giải bài 62 trang 118, 119 sách bài tập Toán 11 - Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 62 trang 118, 119 sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ cung cấp đáp án, hướng dẫn giải chi tiết và phân tích từng bước để giúp các em hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các tài liệu học tập chất lượng và phương pháp giải bài tập hiệu quả.

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(AD\), \(B'C'\), \(DD'\).

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(AD\), \(B'C'\), \(DD'\).

a) Chứng minh rằng \(ADC'B'\) là hình bình hành.

b) Chứng minh rằng \(BD\parallel \left( {AB'D'} \right)\), \(MN\parallel \left( {AB'D'} \right)\).

c) Chứng minh rằng \(\left( {MNP} \right)\parallel \left( {AB'D'} \right)\) và \(BD\parallel \left( {MNP} \right)\).

d*) Xác định giao tuyến của \(\left( {MNP} \right)\) với các mặt của hình hộp.

e*) Lấy một đường thẳng cắt ba mặt phẳng \(\left( {AB'D'} \right)\), \(\left( {MNP} \right)\), \(\left( {C'BD} \right)\) lần lượt tại \(I\), \(J\), \(H\). Tính tỉ số \(\frac{{IJ}}{{JH}}\).

Phương pháp giải - Xem chi tiếtGiải bài 62 trang 118, 119 sách bài tập toán 11 - Cánh diều 1

a) Chỉ ra rằng tứ giác \(ADC'B'\) có một cặp cạnh song song và bằng nhau, từ đó suy ra \(ADC'B'\) là hình bình hành.

b) Để chứng minh rằng \(BD\parallel \left( {AB'D'} \right)\), ta cần chứng minh rằng \(BD\) song song với một đường thẳng nằm trong \(\left( {AB'D'} \right)\). Ta cũng làm tương tự để chứng minh \(MN\parallel \left( {AB'D'} \right)\).

c) Theo câu b, ta đã chứng minh được \(MN\parallel \left( {AB'D'} \right)\). Do đó, để chứng minh \(\left( {MNP} \right)\parallel \left( {AB'D'} \right)\), ta cần chỉ ra thêm 1 đường thẳng song song với \(\left( {AB'D'} \right)\) và cắt \(MN\). Sử dụng các kết quả thu được ở câu b và câu c để suy ra \(BD\parallel \left( {MNP} \right)\).

d) Gọi \(E\), \(F\), \(K\) lần lượt là trung điểm của \(C'D'\), \(B'B\), \(AB\). Ta sẽ chứng minh rằng sáu điểm \(E\), \(F\), \(K\), \(M\), \(N\), \(P\) đồng phẳng, từ đó chỉ ra được sáu đường thẳng \(MP\), \(PE\), \(EN\), \(NF\), \(FK\), \(KM\) chính là các giao tuyến của \(\left( {MNP} \right)\) với sáu mặt của hình hộp.

e) Gọi \(R\), \(O\) lần lượt là giao điểm của \(AC\) với \(MK\) và \(BD\). Chỉ ra rằng hai đường thẳng \(d\) và \(AC\) cắt ba mặt phẳng song song \(\left( {AB'D'} \right)\), \(\left( {MPENFK} \right)\), \(\left( {C'BD} \right)\) và sử dụng định lí Thales trong không gian để tính tỉ số \(\frac{{IJ}}{{JH}}\).

Lời giải chi tiết

Giải bài 62 trang 118, 119 sách bài tập toán 11 - Cánh diều 2

a) Do \(ABCD.A'B'C'D'\) là hình hộp, nên ta có \(ABCD\) và \(BCC'B'\) là các hình bình hành. Vì \(ABCD\) là hình bình hành, ta có \(AD\parallel CB\) và \(AD = CB\). Mà \(BCC'B'\) cũng là hình bình hành, nên ta có \(B'C'\parallel BC\) và \(B'C' = BC\).

Như vậy ta suy ra \(AD\parallel B'C'\) và \(AD = B'C'\). Điều này có nghĩa \(ADC'B'\) là hình bình hành. Ta có điều phải chứng minh.

b) Do \(ABCD.A'B'C'D'\) là hình hộp, ta có \(BB' = DD'\) và \(BB'\parallel DD'\). Suy ra \(DBB'D'\) là hình bình hành, suy ra \(BD\parallel B'D'\). Mà \(B'D' \subset \left( {AB'D'} \right)\), ta suy ra \(BD\parallel \left( {AB'D'} \right)\).

Xét tứ giác \(AMNB'\), ta có \(AM\parallel NB'\) (do \(AD\parallel B'C'\)) và \(AM = NB'\) (do cùng bằng một nửa \(AD\)) nên nó là hình bình hành. Suy ra \(MN\parallel AB'\). Do \(AB' \subset \left( {AB'D'} \right)\), ta suy ra \(MN\parallel \left( {AB'D'} \right)\).

c) Theo câu b, ta đã chứng minh được \(MN\parallel \left( {AB'D'} \right)\).

Do \(M\) là trung điểm của \(AD\), \(P\) là trung điểm của \(DD'\), nên \(MP\) là đường trung bình của tam giác \(AD'D\). Suy ra \(MP\parallel AD'\). Do \(AD' \subset \left( {AB'D'} \right)\) nên \(MP\parallel \left( {AB'D'} \right)\).

Như vậy \(\left( {MNP} \right)\) có hai đường thẳng \(MN\) và \(MP\) cùng song song với \(\left( {AB'D'} \right)\), và hai đường thẳng này cắt nhau tại \(M\), nên ta kết luận \(\left( {MNP} \right)\parallel \left( {AB'D'} \right)\).

Vì \(BD\parallel \left( {AB'D'} \right)\), \(\left( {MNP} \right)\parallel \left( {AB'D'} \right)\) nên ta suy ra \(BD\parallel \left( {MNP} \right)\).

d*) Gọi \(E\), \(F\), \(K\) lần lượt là trung điểm của \(C'D'\), \(B'B\), \(AB\).

Do \(P\) là trung điểm của \(DD'\), \(E\) là trung điểm của \(C'D'\) nên \(PE\) là đường trung bình của tam giác \(C'D'D\), suy ra \(PE\parallel C'D\).

Tứ giác \(DMNC'\) có \(DM\parallel NC'\) (do \(AD\parallel B'C'\)) và \(DM = NC'\) (do cùng bằng một nửa \(AD\)) nên nó là hình bình hành. Suy ra \(MN\parallel DC'\).

Như vậy ta suy ra \(PE\parallel MN\), điều đó có nghĩa \(E \in \left( {MNP} \right)\). Chứng minh tương tự ta cũng có \(F \in \left( {MNP} \right)\) và \(K \in \left( {MNP} \right)\). Như vậy sáu điểm \(E\), \(F\), \(K\), \(M\), \(N\), \(P\) đồng phẳng.

Xét mặt phẳng \(\left( {MNP} \right)\) (cũng là mặt phẳng \(\left( {MPENFK} \right)\)) và \(\left( {ADD'A'} \right)\), ta thấy rằng \(M\) và \(P\) là hai điểm chung của hai mặt phẳng trên, như vậy giao tuyến của \(\left( {MPENFK} \right)\) và \(\left( {ADD'A'} \right)\) chính là đường thẳng \(MP\).

Chứng minh tương tự, giao tuyến của mặt phẳng \(\left( {MPENFK} \right)\) với các mặt phẳng \(\left( {DCC'D'} \right)\), \(\left( {A'B'C'D'} \right)\), \(\left( {BCC'B'} \right)\), \(\left( {ABB'A'} \right)\), \(\left( {ABCD} \right)\) lần lượt là các đường \(PE\), \(EN\), \(NF\), \(FK\), \(KM\).

e*) Gọi \(R\), \(O\) lần lượt là giao điểm của \(AC\) với \(MK\) và \(BD\).

Xét ba mặt phẳng song song \(\left( {AB'D'} \right)\), \(\left( {MPENFK} \right)\), \(\left( {C'BD} \right)\), ta thấy đường thẳng \(AC\) lần lượt cắt ba mặt phẳng trên tại \(A\), \(R\), \(O\). Hơn nữa, theo đề bài, đường thẳng \(d\) cũng cắt ba mặt phẳng song song trên lần lượt tại \(I\), \(J\) và \(H\). Theo định lí Thales trong không gian, ta có \(\frac{{AR}}{{IJ}} = \frac{{RO}}{{JH}} = \frac{{AO}}{{IH}} \Rightarrow \frac{{IJ}}{{JH}} = \frac{{AR}}{{RO}}\).

Do \(M\) là trung điểm của \(AD\), \(K\) là trung điểm của \(AB\) nên \(MK\) là đường trung bình của tam giác \(ABD\). Hơn nữa, do \(R\) là giao điểm của \(AC\) và \(MK\), nên \(R\) là trung điểm của \(AO\), do đó \(\frac{{AR}}{{RO}} = 1\). Như vậy \(\frac{{IJ}}{{JH}} = 1\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 62 trang 118, 119 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 62 trang 118, 119 sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 62 trang 118, 119 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào các kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này yêu cầu học sinh vận dụng các định lý, tính chất đã học để giải quyết các bài toán liên quan đến quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng.

Nội dung chi tiết bài 62

Bài 62 bao gồm các câu hỏi và bài tập khác nhau, được chia thành các phần nhỏ để học sinh dễ dàng tiếp cận và giải quyết. Các dạng bài tập thường gặp bao gồm:

  • Xác định quan hệ song song giữa hai đường thẳng.
  • Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng.
  • Chứng minh một đường thẳng vuông góc với một mặt phẳng.
  • Tính góc giữa đường thẳng và mặt phẳng.
  • Tìm giao điểm của đường thẳng và mặt phẳng.

Hướng dẫn giải chi tiết

Để giải quyết bài 62 một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:

  1. Định nghĩa về đường thẳng song song, đường thẳng vuông góc với mặt phẳng.
  2. Các định lý về quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng.
  3. Các phương pháp chứng minh quan hệ song song, vuông góc.
  4. Cách tính góc giữa đường thẳng và mặt phẳng.

Ví dụ minh họa

Ví dụ 1: Cho hai đường thẳng a và b song song với nhau. Đường thẳng c cắt a tại điểm A. Chứng minh rằng đường thẳng c cắt b tại một điểm duy nhất.

Giải: Vì a và b song song với nhau, và đường thẳng c cắt a tại A, nên theo tính chất của hai đường thẳng song song, đường thẳng c cũng sẽ cắt b tại một điểm duy nhất. Điểm đó nằm trên đường thẳng b và thỏa mãn điều kiện song song với a.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Vẽ hình minh họa để dễ dàng hình dung và giải quyết bài toán.
  • Sử dụng các định lý, tính chất đã học một cách linh hoạt và chính xác.
  • Kiểm tra lại kết quả sau khi giải xong bài toán.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập sau:

  • Bài 1: Cho hình chóp S.ABCD. Chứng minh rằng SC vuông góc với mặt phẳng (ABCD).
  • Bài 2: Tính góc giữa đường thẳng SA và mặt phẳng (ABCD) trong hình chóp S.ABCD.
  • Bài 3: Tìm giao điểm của đường thẳng SO và mặt phẳng (ABCD) trong hình chóp S.ABCD.

Kết luận

Bài 62 trang 118, 119 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về các kiến thức về đường thẳng và mặt phẳng trong không gian. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!

Dạng bài tậpPhương pháp giải
Xác định quan hệ song songSử dụng định lý về hai đường thẳng song song
Xác định quan hệ vuông gócSử dụng định lý về đường thẳng vuông góc với mặt phẳng

Tài liệu, đề thi và đáp án Toán 11