Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 69 sách bài tập toán 11 - Cánh diều

Giải bài 11 trang 69 sách bài tập toán 11 - Cánh diều

Giải bài 11 trang 69 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 11 trang 69 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ phương pháp và cách tiếp cận bài toán.

Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng (frac{1}{4}) độ cao mà quả bóng đạt được trước đó.

Đề bài

Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được trước đó. Gọi \({h_n}\) là độ cao quả bóng đạt được ở lần nảy thứ \(n\).

a) Tìm số hạng tổng quát của dãy số \(\left( {{h_n}} \right)\).

b) Tính giới hạn của dãy số \(\left( {{h_n}} \right)\) và nêu ý nghĩa giới hạn của dãy số \(\left( {{h_n}} \right)\).

c) Gọi \({S_n}\) là tổng độ dài quãng đường đi được của quả bóng từ lúc bắt đầu thả quả bóng đến khi quả bóng chạm đất lần thứ \(n\). Tính \({S_n}\), nếu quá trình này cứ tiếp tục diễn ra mãi thì tổng quãng đường quả bóng di chuyển được là bao nhiêu?

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 69 sách bài tập toán 11 - Cánh diều 1

a) Theo đề bài, sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được lần trước đó, do vậy \({h_{n + 1}} = \frac{1}{4}{h_n}\). Suy ra số hạng tổng quát của dãy là \({h_n} = \frac{{100}}{{{4^n}}}\).

b) Ta có \(\lim \frac{{100}}{{{4^n}}} = \lim 100.\lim \frac{1}{{{4^n}}} = 100.0 = 0\)

Từ đó ta rút ra ý nghĩa giới hạn của dãy \(\left( {{h_n}} \right)\).

c) Sử dụng công thức tính tổng của cấp số nhân lùi vô hạn.

Lời giải chi tiết

a) Theo đề bài, sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được lần trước đó. Sau lần chạm đất thứ \(n\), độ cao của quả bóng là \({h_n}\), thì lần chạm đất tiếp theo (thứ \(n + 1\)), độ cao của quả bóng là \(\frac{1}{4}{h_n}\).

Tức là \({h_{n + 1}} = \frac{1}{4}{h_n} \Rightarrow \frac{{{h_{n + 1}}}}{{{h_n}}} = \frac{1}{4}\). Như vậy \(\left( {{h_n}} \right)\) là cấp số nhân với \({h_1} = \frac{{100}}{4} = 25\) và công bội \(q = \frac{\({h_n} = \frac{{100}}{{{4^n}}}\)1}{4}\).

Như vậy \({h_n} = {h_1}.{q^{n - 1}} = \frac{{100}}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}} = \frac{{100}}{{{4^n}}}\)

Vậy số hạng tổng quát của dãy là .

b) Ta có \(\lim \frac{{100}}{{{4^n}}} = \lim 100.\lim \frac{1}{{{4^n}}} = 100.0 = 0\)

Từ giới hạn này, ta rút ra được ý nghĩa: Khi \(n\) càng dần tới vô cực thì độ cao của quả bóng đạt được sau khi nảy ngày càng nhỏ và độ cao đó dần tới 0.

c) Từ lúc thả rơi đến lần chạm đất đầu tiên, qua bóng đi được 100 m.

Từ lúc chạm đất lần đầu tiên đến lúc chạm đất lần thứ hai, quả bóng nảy lên độ cao \({h_1}\) rồi rơi xuống đất. Lúc này quả bóng đi được đoạn đường là \(2{h_1}\).

Từ lúc chạm đất lần thứ hai đến lúc chạm đất lần thứ ba, quả bóng nảy lên độ cao \({h_2}\) rồi rơi xuống đất. Lúc này quả bóng đi được đoạn đường là \(2{h_2}\).

Cứ như vậy, quãng đường quả bóng đi được là:

\({S_n} = 100 + 2\left( {{h_1} + {h_2} + {h_3} + ... + {h_n}} \right)\)

Nếu quá trình bóng nảy cứ tiếp tục diễn ra mãi thì quãng đường quả bóng đi được là \(\lim {S_n} = 100 + 2\left( {{h_1} + {h_2} + {h_3} + ...} \right)\)

Ta thấy \(\left( {{h_n}} \right)\) là cấp số nhân với công bội \(q = \frac{1}{4} < 1\), nên \(\left( {{h_n}} \right)\) là cấp số nhân lùi vô hạn.

Như vậy \(\lim {S_n} = 100 + 2\left( {{h_1} + {h_2} + {h_3} + ...} \right) = 100 + 2\frac{{{h_1}}}{{1 - q}} = 100 + 2\frac{{25}}{{1 - \frac{1}{4}}} = \frac{{500}}{3}\)

Vậy tổng quãng đường quả bóng di chuyển là \(\frac{{500}}{3}\) m.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 11 trang 69 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 11 trang 69 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 11 trang 69 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của chúng để giải quyết các bài toán liên quan đến hình học không gian.

Nội dung chi tiết bài 11 trang 69 SBT Toán 11 Cánh Diều

Bài 11 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ. Học sinh cần thực hiện các phép cộng, trừ vectơ, tích của một số với vectơ dựa trên tọa độ của các vectơ đã cho.
  • Dạng 2: Chứng minh đẳng thức vectơ. Học sinh cần sử dụng các tính chất của phép toán vectơ để chứng minh các đẳng thức vectơ được đưa ra.
  • Dạng 3: Tìm tọa độ của vectơ. Học sinh cần sử dụng các công thức liên quan đến tọa độ của vectơ để tìm tọa độ của vectơ thỏa mãn các điều kiện cho trước.
  • Dạng 4: Ứng dụng vectơ vào hình học không gian. Học sinh cần sử dụng vectơ để giải quyết các bài toán liên quan đến việc chứng minh các tính chất của hình học không gian, chẳng hạn như chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hoặc hai mặt phẳng vuông góc.

Hướng dẫn giải chi tiết bài 11 trang 69 SBT Toán 11 Cánh Diều

Để giải quyết bài 11 trang 69 sách bài tập Toán 11 Cánh Diều một cách hiệu quả, bạn cần:

  1. Nắm vững kiến thức cơ bản về vectơ. Hiểu rõ định nghĩa, các phép toán vectơ, và các tính chất của chúng.
  2. Đọc kỹ đề bài. Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  3. Lựa chọn phương pháp giải phù hợp. Dựa trên dạng bài tập và các thông tin đã cho, lựa chọn phương pháp giải phù hợp.
  4. Thực hiện các phép toán một cách cẩn thận. Tránh sai sót trong quá trình tính toán.
  5. Kiểm tra lại kết quả. Đảm bảo rằng kết quả của bạn là chính xác và hợp lý.

Ví dụ minh họa giải bài 11 trang 69 SBT Toán 11 Cánh Diều

Ví dụ: Cho hai vectơ a = (1; 2; 3)b = (-2; 1; 0). Tính 2a - b.

Giải:

2a = 2(1; 2; 3) = (2; 4; 6)

2a - b = (2; 4; 6) - (-2; 1; 0) = (2 - (-2); 4 - 1; 6 - 0) = (4; 3; 6)

Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, bạn cần lưu ý một số điều sau:

  • Sử dụng đúng các công thức và tính chất của vectơ.
  • Chú ý đến dấu của các tọa độ vectơ.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Vẽ hình minh họa để giúp bạn hiểu rõ hơn về bài toán.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11
  • Sách bài tập Toán 11
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết bài 11 trang 69 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11