Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 27 trang 74 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm
Đề bài
Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm, chiếc ô tô để lại vết trượt dài 20,4 m (được tính từ lúc bắt đầu đạp phanh đến khi xảy ra va chạm). Trong quá trình đạp phanh, ô tô chuyển động theo phương trình \(s\left( t \right){\rm{ }} = {\rm{ }}20t - \frac{5}{2}{t^2},\)trong đó \(s\left( {\rm{m}} \right)\) là độ dài quãng đường đi được sau khi phanh, \(t\left( s \right)\) là thời gian tính từ lúc bắt đầu phanh \(\left( {0 \le t \le 4} \right).\)
a) Tính vận tốc tức thời của ô tô ngay khi đạp phanh. Hãy cho biết xe ô tô trên có chạy quá tốc độ hay không, biết tốc độ giới hạn cho phép là 70 km/h.
b) Tính vận tốc tức thời của ô tô ngay khi xảy ra va chạm?
Phương pháp giải - Xem chi tiết
Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \({t_0}\) là: \(v\left( {{t_0}} \right) = s'\left( {{t_0}} \right).\)
Lời giải chi tiết
Vận tốc tức thời của ô tô tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right) = 20 - 5t.\)
a) Vận tốc tức thời của ô tô ngay khi đạp phanh là vận tốc tức thời của ô tô tại thời điểm \(t = 0\): \(v\left( 0 \right) = s'\left( 0 \right) = 20 - 5.0 = 20\left( {{\rm{m/s}}} \right) = 72\left( {{\rm{km/h}}} \right).\)
Tốc độ giới hạn cho phép là 70 km/h nên xe ô tô trên đã chạy quá tốc độ.
b) Khi xảy ra va chạm, ta có phương trình:
\(20t - \frac{5}{2}{t^2} = 20,4 \Leftrightarrow - \frac{5}{2}{t^2} + 20t - 20,4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1,2\left( {\rm{s}} \right)\\t = 6,8\left( {\rm{s}} \right)\end{array} \right.\)
Do \(0 \le t \le 4\) nên \(t = 1,2\left( {\rm{s}} \right).\)
Vận tốc tức thời của ô tô ngay khi xảy ra va chạm:
\(v\left( {1,2} \right) = s'\left( {1,2} \right) = 20 - 5.1,2 = 14\left( {{\rm{m/s}}} \right).\)
Bài 27 trang 74 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định, tập giá trị, tính đơn điệu và các tính chất khác của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hàm số lượng giác, bao gồm định nghĩa, đồ thị, tính chất và các công thức lượng giác quan trọng.
Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn tập trung vào những gì cần tìm và lựa chọn phương pháp giải phù hợp. Ví dụ, nếu đề bài yêu cầu tìm tập xác định của hàm số, bạn cần xác định những giá trị của x mà hàm số có nghĩa.
Sau khi đã hiểu rõ yêu cầu của bài toán, bạn có thể áp dụng kiến thức về hàm số lượng giác để giải quyết. Điều này có thể bao gồm việc sử dụng các công thức lượng giác, phân tích đồ thị hàm số hoặc sử dụng các phương pháp đại số để tìm ra đáp án.
Đề bài: Xác định tập xác định của hàm số y = tan(2x + π/3).
Lời giải:
Khi giải bài tập hàm số lượng giác, bạn cần lưu ý những điều sau:
Để củng cố kiến thức và kỹ năng giải bài tập hàm số lượng giác, bạn có thể luyện tập thêm với các bài tập sau:
Giaitoan.edu.vn hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 27 trang 74 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!