Logo Header
  1. Môn Toán
  2. Giải bài 62 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 62 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 62 trang 50 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 62 trang 50 Sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Giải mỗi phương trình sau:

Đề bài

Giải mỗi phương trình sau:

a) \({\log _4}\left( {x - 4} \right) = - 2;\)

b) \({\log _3}\left( {{x^2} + 2x} \right) = 1;\)

c) \({\log _{25}}\left( {{x^2} - 4} \right) = \frac{1}{2};\)

d) \({\log _9}\left[ {{{\left( {2x - 1} \right)}^2}} \right] = 2;\)

e) \(\log \left( {{x^2} - 2x} \right) = \log \left( {2x - 3} \right);\)

g) \({\log _2}{x^2} + {\log _{\frac{1}{2}}}\left( {2x + 8} \right) = 0.\)

Phương pháp giải - Xem chi tiếtGiải bài 62 trang 50 sách bài tập toán 11 - Cánh diều 1

- Tìm điều kiện cho phương trình.

- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.

Lời giải chi tiết

a) Điều kiện: \(x > 4.\)

\({\log _4}\left( {x - 4} \right) = - 2 \Leftrightarrow x - 4 = {4^{ - 2}} \Leftrightarrow x = \frac{{65}}{{16}}\) (thỏa mãn).

b) Điều kiện: \({x^2} + 2x > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x < - 2\end{array} \right.\)

 \({\log _3}\left( {{x^2} + 2x} \right) = 1 \Leftrightarrow {x^2} + 2x = 3 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right)\) (thỏa mãn)

c) Điều kiện: \({x^2} - 4 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < - 2\end{array} \right.\)

\({\log _{25}}\left( {{x^2} - 4} \right) = \frac{1}{2} \Leftrightarrow {x^2} - 4 = {25^{\frac{1}{2}}} \Leftrightarrow {x^2} - 4 = 5 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\end{array} \right)\) (thỏa mãn)

d) Điều kiện: \({\left( {2x - 1} \right)^2} > 0 \Leftrightarrow x \ne \frac{1}{2}.\)

\({\log _9}\left[ {{{\left( {2x - 1} \right)}^2}} \right] = 2 \Leftrightarrow {\left( {2x - 1} \right)^2} = {9^2} \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 9\\2x - 1 = - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 4\end{array} \right)\) (thỏa mãn)

e) \(\log \left( {{x^2} - 2x} \right) = \log \left( {2x - 3} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 2x = 2x - 3\\2x - 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4x + 3 = 0\\x > \frac{3}{2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\\x > \frac{3}{2}\end{array} \right. \Leftrightarrow x = 3.\)

g) Điều kiện: \(\left\{ \begin{array}{l}{x^2} > 0\\2x + 8 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 4\\x \ne 0\end{array} \right..\)

 \(\begin{array}{l}{\log _2}{x^2} + {\log _{\frac{1}{2}}}\left( {2x + 8} \right) = 0 \Leftrightarrow {\log _2}{x^2} - {\log _2}\left( {2x + 8} \right) = 0 \Leftrightarrow {\log _2}\frac{{{x^2}}}{{2x + 8}} = 0\\ \Leftrightarrow \frac{{{x^2}}}{{2x + 8}} = 1 \Leftrightarrow {x^2} = 2x + 8 \Leftrightarrow {x^2} - 2x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 2\end{array} \right.\left( {TM} \right).\end{array}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 62 trang 50 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 62 trang 50 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 62 trang 50 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh phải xác định mối quan hệ giữa các đường thẳng và mặt phẳng, tính góc giữa chúng, và chứng minh các tính chất liên quan.

Nội dung bài tập

Bài 62 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương đối giữa hai đường thẳng trong không gian (song song, cắt nhau, chéo nhau).
  • Xác định vị trí tương đối giữa đường thẳng và mặt phẳng.
  • Tính góc giữa đường thẳng và mặt phẳng.
  • Chứng minh các tính chất về quan hệ song song, vuông góc trong không gian.

Phương pháp giải bài tập

Để giải bài tập bài 62 trang 50 Sách bài tập Toán 11 - Cánh Diều hiệu quả, bạn cần nắm vững các kiến thức và phương pháp sau:

  1. Nắm vững định nghĩa và tính chất: Hiểu rõ định nghĩa về đường thẳng song song, đường thẳng vuông góc, mặt phẳng song song, mặt phẳng vuông góc. Nắm vững các tính chất liên quan đến quan hệ giữa các đường thẳng và mặt phẳng.
  2. Sử dụng các định lý: Áp dụng các định lý về góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng, điều kiện để hai đường thẳng song song, vuông góc.
  3. Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  4. Biến đổi hình học: Sử dụng các phép biến đổi hình học (phép chiếu, phép đối xứng) để đơn giản hóa bài toán.
  5. Sử dụng hệ tọa độ: Trong một số trường hợp, việc sử dụng hệ tọa độ có thể giúp bạn giải quyết bài toán một cách dễ dàng hơn.

Ví dụ minh họa

Bài toán: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).

Lời giải:

  1. Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên AC ⊥ BD.
  2. Vì SA ⊥ (ABCD) nên SA ⊥ AC. Do đó, góc giữa SC và mặt phẳng (ABCD) bằng góc giữa SC và AO.
  3. Trong tam giác vuông SAO, ta có: AO = AC/2 = a√2/2.
  4. tan(∠SCO) = SA/AO = a/(a√2/2) = √2.
  5. Vậy, góc giữa đường thẳng SC và mặt phẳng (ABCD) là arctan(√2).

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các đề thi thử. Hãy chú trọng vào việc hiểu bản chất của bài toán và áp dụng các phương pháp giải phù hợp.

Lời khuyên

Việc học Toán 11 đòi hỏi sự kiên trì và nỗ lực. Hãy dành thời gian ôn tập lý thuyết, làm bài tập thường xuyên và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Chúc bạn học tập tốt!

Bảng tóm tắt công thức quan trọng

Công thứcMô tả
Góc giữa đường thẳng và mặt phẳngLà góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng.
Điều kiện để đường thẳng vuông góc với mặt phẳngĐường thẳng đó vuông góc với mọi đường thẳng nằm trong mặt phẳng.

Tài liệu, đề thi và đáp án Toán 11