Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 14 trang 46 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Với mỗi số nguyên dương \(n\), lấy \(n + 6\) điểm cách đều nhau trên đường tròn.
Đề bài
Với mỗi số nguyên dương \(n\), lấy \(n + 6\) điểm cách đều nhau trên đường tròn. Nối mỗi điểm với điểm cách nó hai điểm trên đường tròn đó để tạo thành các ngôi sao như hình vẽ. Gọi \({u_n}\) là số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao thì ta được dãy số \(\left( {{u_n}} \right)\). Tìm công thức của số hạng tổng quát \({u_n}\).
Phương pháp giải - Xem chi tiết
Trên đường tròn có \(n + 6\) điểm cách đều nhau, nên đường tròn được chia thành \(n + 6\) cung nhỏ bằng nhau, và số đo mỗi cung nhỏ là \({\left( {\frac{{360}}{{n + 6}}} \right)^o}\).
Do mỗi điểm được nối với điểm cách nó hai điểm trên đường tròn, nên góc ở đỉnh của mỗi ngôi sao là góc nội tiếp chắn \(\left( {n + 6} \right) - 2.3 = n\) cung bằng nhau đó. Do đó số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao là \({u_n} = \frac{{180n}}{{n + 6}}\).
Lời giải chi tiết
Trên đường tròn có \(n + 6\) điểm cách đều nhau, nên ta có đa giác \({A_1}{A_2}{A_3}...{A_{n + 6}}\) nội tiếp đường tròn. Suy ra đường tròn được chia thành \(n + 6\) cung nhỏ bằng nhau, và số đo mỗi cung nhỏ là \({\left( {\frac{{360}}{{n + 6}}} \right)^o}\).
Xét đỉnh \({A_1}\). Do mỗi điểm được nối với điểm cách nó hai điểm trên đường tròn, nên đỉnh \({A_1}\) được nối với đỉnh \({A_4}\) (cách hai đỉnh \({A_2}\) và \({A_3}\)) và đỉnh \({A_{n + 4}}\) (cách hai đỉnh \({A_{n + 5}}\) và \({A_{n + 6}}\)).
Ta có góc \(\widehat {{A_{n + 4}}{A_1}{A_4}}\) là góc nội tiếp chắn cung lớn . Cung này chứa \(\left( {n + 4} \right) - 4 + 1 = n\) cung nhỏ, nên số đo góc này tính theo đơn vị độ là:
\(\frac{1}{2}.\frac{{360}}{{n + 6}}.n = \frac{{180n}}{{n + 6}}\).
Vậy dãy số \(\left( {{u_n}} \right)\) cần tìm có công thức của số hạng tổng quát là \({u_n} = \frac{{180n}}{{n + 6}}\).
Bài 14 trang 46 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định, tập giá trị, tính đơn điệu và các tính chất khác của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hàm số lượng giác, bao gồm định nghĩa, đồ thị, tính chất và các công thức liên quan.
Trước khi đi vào giải bài tập cụ thể, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 14 trang 46, chúng ta cần phân tích kỹ đề bài và áp dụng các kiến thức lý thuyết đã học. Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi trong bài tập:
Để xác định tập xác định của hàm số, chúng ta cần tìm các giá trị của x sao cho biểu thức trong hàm số có nghĩa. Ví dụ, nếu hàm số chứa căn bậc hai, chúng ta cần đảm bảo biểu thức dưới dấu căn lớn hơn hoặc bằng 0. Nếu hàm số chứa phân số, chúng ta cần đảm bảo mẫu số khác 0.
Để tìm tập giá trị của hàm số, chúng ta cần xác định khoảng giá trị mà hàm số có thể nhận được. Điều này có thể được thực hiện bằng cách xét đồ thị của hàm số hoặc sử dụng các phương pháp toán học khác.
Để xét tính đơn điệu của hàm số, chúng ta có thể sử dụng đạo hàm của hàm số. Nếu đạo hàm dương trên một khoảng nào đó, hàm số đồng biến trên khoảng đó. Nếu đạo hàm âm trên một khoảng nào đó, hàm số nghịch biến trên khoảng đó.
Để củng cố kiến thức và kỹ năng giải toán, bạn có thể làm thêm các bài tập tương tự sau:
Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến hoặc tham gia các khóa học luyện thi Toán 11 để nâng cao trình độ.
Khi giải bài tập hàm số lượng giác, bạn cần lưu ý những điều sau:
Hàm số lượng giác có nhiều ứng dụng trong thực tế, chẳng hạn như:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 14 trang 46 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!